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Abstract. Letx = {Xn}nein be a hidden procesg—= {yn}nen @n observed process anek {rn}nen

some auxiliary process. We assume that{tn}nen With th = (Xn,n,Yn-1) is a (Triplet) Markov

Chain (TMC). TMC are more general than Hidden Markov Chains (HMC) and yet enable the de-
velopment of efficient restoration and parameter estimation algorithms. This paper is devoted to
Bayesian smoothing algorithms for TMC. We first propose twelve algorithms for general TMC. In
the Gaussian case, these smoothers reduce to a set of algorithms which include, among other so-
lutions, extensions to TMC of classical Kalman-like smoothing algorithms (originally designed for
HMC) such as the RTS algorithms, the Two-Filter algorithms or the Bryson and Frazier algorithm.
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INTRODUCTION

An important problem consists in estimating an unobservable prace§s, }nen from

an observed ong = {yn}tnen. This is done classically in the framework of Hidden
Markov Chains (HMC) which have been extensively studied for many years (see e.qg.
the recent tutorials [1] [2]). In an HMR is first assumed to be a Markov chain (MC)
(by the very meaning of the words "HMC"), and next the stochastic interactionarud

y are designed in such a way thatan be efficiently restored from

On the other hand, Pairwise [3] (PMC) and Triplet [4] MC (TMC) have been intro-
duced recently. A PMC is a model in which the péiry) is assumed to be an MC. So
a PMC can indeed be seen as a partially observed vector MC, in which we observe one
componenty and we want to restore the other oxeAny HMC is also a PMC. The
converse is not true, becauséxfy) is a (vector) MC then the marginal procesis not
necessarily an MC. On the other hand, one can extend from HMC to PMC some efficient
Bayesian restoration algorithms. In particular, in the linear Gaussian case, the extension
to PMC of the Kalman filter has been considered in [5].

The PMC model can be further generalized to the TMC model [4] which we now
recall. ATMC is a stochastic dynamical model which describes the interactions between
3 processes : the hidden processhe observed procegs and an auxiliary process
r = {rn}tnen. The triplett = (x,r,y) is called a TMC if(x,r,y) is a (vector) MC. The
interest of TMC is twofold :

+ As far as modeling is concerned,(if, (x,y)) is an MC then the marginal process
(x,y) is not necessarily an MC, so TMC are not necessarily PMC. TMC indeed
include some classical generalizations of HMC [6] [5]. For instance, Hidden semi-
Markov Chains [7] [8] [9] are particular TMC witk andr discrete and in which,



represents the time during whigh remains in the same state; Jump-Markov state
space systems are particular TMC wihcontinuous and discrete; state-space
systems with colored process and/or measurement noise(s) are particular TMC with
continuous hidden and auxiliary processes.

+ As far as restoration is concerned, the TMICx,y) can be viewed as the PMC
((r,x),y); sox* = (r,x) can be restored fromby a PMC algorithm, and finally
is obtained by marginalization (such algorithms have been proposed in the discrete
[4] or linear Gaussian [5] cases).

The wider generality of PMC w.r.t. HMC and of TMC w.r.t. PMC can also be seen
through the expression of the conditional lawyogivenx. In an HMC it is classically
assumed thap(yo:n|Xon) = P(Yo|Xo) - - - P(Yn|Xn), Which is very simple, and indeed too
simple in such applications as speech recognition [10] [11]; in a R¥Gn|Xon) IS an
MC, which is much richer; and in a TM®(yo:n|Xon) is the marginal distribution of the
MC p(Yon, Fon|Xon), Which is still much richer than an MC. PMC and TMC models are
thus expected to better fit the need for a better modeling of the noise distribution.

Let us now turn to the contribution of this paper. We first propose twelve smoothing
algorithms for general continuous TMC. These algorithms are derived from Markovian
properties of only, considered as an MC both in the forward and the backward direction.
They can be classified into three classes : four forward filtering backward smoothing al-
gorithms, four backward filtering forward smoothing algorithms and four non-recursive
algorithms. We emphasize on the role played by four probability density functions (pdf)
(o, Bn, ¥h @and ) as well as by the (forward and/or backward) TMC pdf of the MC

We next address the particular case of Gaussian TMC. The general algorithms then
reduce to twelve specific algorithms (plus variations thereof). This section extends
the family of existing fixed interval smoothing algorithms in two directions. On the
one hand, our algorithms are directly proposed for the TMC framework and can be
particularized (if necessary) to the HMC case; on the other hand, even in the HMC case
our set of algorithms encompasses some classical solutions (RTS algorithm in first [12]
and second [13] form, Two-Filter algorithms [14] [15], Bryson and Frazier algorithm
[16] ...) but it also contains some original algorithms.

TMC FIXED-INTERVAL SMOOTHING ALGORITHMS

Letxn € IR™ be the hidden procesg, € IR"™ the observation and, € IR™ the auxiliary
process. Let us set; = (Xp,rn) € R™ andt, = (Xn,rn,Yn_1). We assume that=
{tn}p>o (With y_1 = 0) is an MC. Letp(xon) (resp. p(Xs|yon)). say, denote the pdf
(w.r.t. Lebesgue measure) &p., (resp. ofx’ given yon); other pdfs of interest are
defined similarly. The aim of this section is to propose general fixed-interval Bayesian
smoothing algorithms for TMC, i.e. we want to compute the smoothingoei|yo:n )

for all n, 0 < n < N. In the following we indeed focus on the computatiorpgk;;|yo:n);

the pdfp(xn|yo:n) Of interest is obtained by marginalization.



The algorithms we propose can be classified into three families :

1. Backward recursive algorithms. These are two-pass algorithms, in which (i)
p(X;|yon) is computed fronp(X?: 4 |yon) Vvia

POXalyon) = [

RMx*

P(Xnr1lYo:N) P(XA XAt 1, Yo ) OXp g (1)

(whence the term "backward recursive algorithm"); and(i;|x:., 1, Yon) in (1)
is computed in the forward direction;

2. Forward recursive algorithms. These are two-pass algorithms, in which (i)
P(Xp,1|Yon) is computed fromp(xj|yo:n) via

POXhalyon) = |

|Rnx*

P(XqlYo:N) P(Xp1/Xn, Yo ) dXp, (2)

and (i) p(x;,,.1|X3, Yo:n) in (2) is computed in the backward direction;

3. Non-recursive algorithms. In these algorithmsp(x;|yo:n) is computed from two
pdfs; one of them is computed recursively in the forward direction and the other
recursively in the backward direction.

These algorithms can be further sub-classified by taking into account which TMC
pdfs are used in the computations. More precisely, sinsen MCt is also an MC in
the backward direction; so we have

P(Xp Yn-1/Xn 1N YnN) = P(Xp,Yn—1|Xni1,Yn
= P(Xp/XAai1,Yn Yn-1

P(Xnt1,YnlXom, Yon-1) = P(Xni1,YnlX3,Yn-1)
= P(Xp1Xn5Yn: Yn-1) P(Yn[Xn, Yn-1), (3)

( )

)

P(Yn-1/Xni1,Yn)- (4)

As we are going to see, each of the three families of algorithms above contains one al-
gorithm which only uses the forward TMC pdfgx, , ; X5, Yn, Yn—1) and p(yn|X;,Yn-1)
in (3), one algorithm which only uses the backward TMC poffsy, |, 1,Yn,Yn-1) and
P(Yn-1|Xn,1,Yn) in (4), and two algorithms which use both.

Let us give two familiar examples in the case whgfe= x, and (X,y) is a clas-
sical HMC, i.e. in the case where there is no auxiliary progessd the factoriza-
tion p(Xom, Yon) = P(Xo) i1 P(Xi|Xi—1) 1L P(Yi|xi) holds. Then in factorization (3)
P(Xp+1/XR: Yn, Yn-1) reduces t@(Xn-1|Xn) and p(yn|Xq, yn-1) reduces tq(yn|xn). If x
is discrete, the Forward-Backward algorithm [17] compuytés,|yon) as a (normal-
ized) product of two pdfsx(x,) andB(xn), in which & (xp) (resp.B(xn)) is computed
recursively in the forward (resp. backward) direction, by recursions which use only the
forward HMC pdfsp(xn+1|Xn) andp(yn|xn); the Forward-Backward algorithm thus be-
longs to the third family of algorithms (first subclass). On the other hand, in the Gaussian
case the RTS algorithm [12] belongs to the first family (first subclass).

Let us now get more precisely into the contents of this section. As we shall see, each

one of the algorithms (9)-(20) makes use of one (or two) out of the four @.dfjsef



POXiIYom-1). Bn = P(Yrnltn), 1 £ P(Xilyn-1x) and &y E' p(Yon-2[tn). These pdfs,
in turn, can be computed recursively (in the forward directiondgrand 8,, in the
backward direction fof, andy,) from the (either forward or backward) TMC pdfs; so
for sake of clarity let us first gather these recursions in equations (5) to (8).

Recursive algorithms for oy, Bn, h and 6,

Let us classify the recursive algorithms fap, By, % and é, according to which
TMC pdfs are used in the computation®(X;, 1|X3,Yn,Yn-1) and p(yn|Xp,yn-1) for
the "forward" recursive algorithms (see factorisation (3)), a(h|x;, 1,Yn,Yn-1) and
P(Yn-1/X4,1,Yn) for the "backward” recursive algorithms (see factorisation (4)).

The algorithm described in Proposition 1 propagatg# the forward direction and
Bn in the backward direction.

Proposition 1 Assume that we are given the forward TMC pdfs (see factorisation (3)) of
the MCt. Then the one-step prediction paf = p(X}|yon—1) and the filtering pdfx, =
P(Xn|Yon) can be propagated from+ 0to N (with og = p(xg)) as

* _ P(Yntn) P(XalYo:n—1)
{ POalYon) = 1 pntnip0alyon 106 - (5)
p(X;+1’y0:n) = Jroe p(X;Jrl‘tnayn) P(XA|Yon)dxs,

on the other hand, the likelihood functiofis = p(yn:n|tn) and Bn = P(Yn+1N|tn,Yn)
can be computed from=a N to n= 0 (with Sy 1 = 1) as

{ Po = Jgy POGyaltnYn) X Bris 0K ©

Bn = P(Ynltn) X Bn

The algorithm described in Proposition 2 propagates the forward andy, in the
backward direction. These recursions now only make use of the backward TMC pdfs

P(XAXAs 1, Y, Yn-1) and p(Yn—1/Xf,1,Yn)-

Proposition 2 Assume that we are given the backward TMC pd#§;|®;,, 1,Yn,Yn-1)
and pyn-1/X;,1,Yn) (see factorisation (4)) of the MC Then the likelihood functions

on = P(Yon—2|tn) and 8n11 = P(Yon-2|tn+1,Yn—1) can be computed from#a 1to N
(with o1 = 1) as

gﬂ—b—l = fIR”x* p(X;|tn+1>Xn—1> X &n dX;k] . 7)
Ont1 = P(Yn-1ltnt1) X Syt

on the other handy, = p(X|yn—1:n) and 1 = P(X;, 1|yn—1:n) can be computed from
n=N to n=1with pixi. 1lyw) = it as

X o P(Yn-1/tn+1) P(X5 . 1|YnN)
{ PO aYn-1n) = o e PO K : (8)
P(XH|Yn-1:N) = Jrne P(XH|tn+1,Yn—1) p(X;Jrl‘yn—l:N)dXﬁJrl



Backward recursive computation of the smoothing pdf

The aim of this section is to compute the backward conditional TMC pdf
P(Xh[Xhy1,Yon) in equation (1). Since is an MC, yn1:n and x;, are independent
conditionally on(x;,, 1,Yon), SO P(X3[Xh,1,Yon) = P(XH|Xf,1,Yon). AS we now see,
P(X;|X;41,Yon) can be computed by combining appropriately a, or o, and the for-
ward (or backward) TMC pdfs, which leads to four different algorithms. The algorithm
(9) (resp. (10)) only uses forward (resp. backward) TMC pdfs, and the algorithms (11)
and (12) use both.

Proposition 3 Assume that we are given the forward and/or backward TMC pdfs (see
factorisations (3) and (4)) of the MC Thena;, and a1 (resp.d,) can be computed in
the forward direction by (5) (resp. (7)), and nextxg|x;, 1, Yon) by

. . p(X;Jrl‘tn,yn)&n
Ptnln: . Yon) = Jrne PG4 1[tns Yn) OndXGy ®)
p(xplt1) if n=0

i e o | (10)
{ JRrMs p(Xﬁ\tJ;117Yni1)5ndx’ﬁ if n>1

P(Xg|th+1,Yn—1)0n

POGilyn-1)
= (11)
P(Xi th1,Yn—1) 0n 4y %
e B30

P(thy1/tn) OnP(X;|Yn-1) . (12)
SR P(tnt1/tn) SnP(X5Yn—1)dX;,

Finally p(x;|yo:n) can be computed in reverse-time (frore=iN to n= 0) by (1).

Forward recursive computation of the smoothing pdf

This section is parallel to the previous one. Our aim here is to compute
P(Xp.1XR,Yon) in (2). Sincet is an MC, yon—2 and x;,,; are independent condi-
tionally on (X3, Yn-1:N), SO P(X;.1/Xh,Yon) = P(Xn 1/Xm Yn-1:n). AS we now see,
P(X;,1/X3,Yn-1:n) can be computed by combining appropriat@ly ¥ or y, or and
the forward (or backward) TMC pdfs, which leads to four different algorithms. The
algorithm (13) (resp. (14)) only uses forward (resp. backward) TMC pdfs, and the
algorithms (15) and (16) use both.

Proposition 4 Assume that we are given the forward and/or backward TMC pdfs (see
factorisations (3) and (4)) of the MC Thenf,, (resp.y, andy,) can be computed in the
backward direction by (6) (resp. (8)), and nexp, , |Xp, Yn-1:n) by

% * o P(Xp41/tn,Yn)Bnia
P(Xpi1lXn Yn-1N) = T PO 1/t Yo B 20X 1 (13)

_ P(XAltnt1,Yn-1)Ths1
fIR“x* (Xn|tn+la ynfl)'}’n+ldxn+1




POX, 1 1/tnYn) Thia

_ p(xﬁ+1|Yn) (15)
f N p(X;Jrl‘thn)YnJrl dx*
IR"x* p(x*nﬂ\yn) n+1

_ P(tnltni1)Bni1P(Xpy1]Yn) . (16)

SR P(tnltnsa) Brra P(XG 4 Yn)dXE, 4
Finally p(x;|yo:n) can be computed in the forward direction by (2).

Non recursive computation of the smoothing pdf

Let us now see thagi(x;;|yo.n) can be essentially computed as a (normalized) product
of ap, (or dy) and B, (or 1), which leads to four algorithms. The algorithm (17) (resp.
(18)) only uses forward (resp. backward) TMC pdfs, and (19) and (20) use both.

Proposition 5 Assume that we are given the forward and/or backward TMC pdfs (see
factorisations (3) and (4)) of the MC Then the smoothing pdf can be computed as

¥ . 0On X Bn
p<Xn|YON) - fanX* an % ﬁndxﬁ (17)
Yh X On
— 18
fanX* ’}/n X 6ndX; ( )
On X
P(XiYn-1)
- Bl 19)
Jroe: Ty X
_ On X Bn < P(X;|Yn-1) (20)

Jre On X B x PXG;|Yn—1)dx;;’

in which oy, (resp.8,) is computed in the forward direction by (5) (resp. (7)), abd
(resp.y) is computed in the backward direction by (6) (resp. (8)).

THE GAUSSIAN CASE

The aim of this section is to derive Kalman-like smoothing algorithms for Gaussian
TMC. From now on we thus assume that

{X;H} _ lyg*x yﬁ*y] [x;‘] ] N { wX’ }7 -
——

Yn g Y || Yn—1 Wi

n
thea Wn

in whichw = {wn}nei is independent and independent@fxg~ 4 (Xg, P’é*’x*) and

é*’x* Qé*7y
W A O e oy | (22)

/

-~

“n



We also assume thﬁf’x* and 2, are positive definite. IK: =xn, 7% Y =0, #{Y =0

ando@?,‘*’y =0, model (21)-(22) reduces to the classical state-space system.
From (21) and (22)t is a vector Gauss-Markov process. So all the pdfs in the

last section are Gaussian, and in particylét;|Yon) ~ J/(?;|0:N, P)r(1|6XN) Computing

p(X;|Yo:n) @amounts to computin@‘o:N andeﬂoxN, and indeed the general algorithms of
Propositions 3 to 5 (which compupgx;;|yon) from o, (or 8,) and/ory, (or Br)), reduce

to equations which compute arg mMaeXn|YoN) (i.e.,i;‘o.N), and the associated covari-
ance matrix, from arg mazxn = xn‘On 1 (or arg ma>6n) and/or arg maaq1 = xn‘n 1N
(orarg ma>ﬁn) as well as the associated covarlance matrice(s). It |s not possible here to

write down these twelve Gaussian algorithms (plus variations thereof) explicitely. Let us
just mention that they are most of the time extensions to the TMC context of algorithms
already proposed in the classical state-space smoothing literature. More precisely:

* Recursive algorithms for o, Bn, ¥h and on.
— Equation (5) reduces to an algorithm which, in filter form [5] (resp. in infor-
mation form) is an extension to TMC of the Kalman filter in filter form [18]

(resp. in information form [19] [16]);

— (6) reduces to an algorithm which propagates argﬂﬂaAfter some manipu-

lations, one can easily show that it generalizes to TMC the backward algorithm
used in the two-filter smoother by Mayne [14] [16, egs. (10.4.14)-(10.4.15)];
— (7) reduces to an algorithm which propagates argdqa&fter some manipu-
Xq

lations, one can easily show that it has a counterpart in the HMC case, intro-
duced in the context of complementary models by Weinert (see [20, 83.2)]);
— equation (8) reduces to filter or information forms algorithms; in particular,
the filter form algorithm has an HMC counterpart [16, §9.8]).
» Backward recursive computation of the smoothing pdf.
— Equations (1) and (9) reduce to an algorithm [21, Prop. 3] which is an exten-
sion to TMC of the RTS algorithm [12];
— equations (1) and (10) reduce to an algorithm which extends to TMC an
algorithm introduced by Weinert [20, p. 40] (in the cagg * invertible);
— finally, equations ((1) and (11)), and ((1) and (12)), reduce to algorithms
which, to our best knowledge, have no counterparts in the HMC case.
 Forward recursive computation of the smoothing pdf.
— Equations (2) and (13) reduce to an algorithm which extends to TMC an
algorithm introduced in the concept of complementary models by Dgsai
al. [13] [20, p. 35];
— equations (2) and (14) reduce to an algorithm which extends to TMC an
algorithm partially found in Kailathet al. [16, pp. 401, Exs. 10.12 & 10.14];

L In fact, only the mean of the smoothing pdf is given explicitely.
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— equations ((2) and (15)), and ((2) and (16)), reduce to algorithms which, to our
best knowledge, have no counterparts in the HMC case.

 Non recursive computation of the smoothing pdf.
— Equation (17) reduces to an algorithm which extends to TMC the two-filter
algorithm by Mayne [14] (see also Fraser and Potter [15]);

— equation (18) reduces to an algorithm which, to the best of our knowledge, has
no counterpart in the HMC case;

— equation (19) reduces to an algorithm [21, Prop. 4] which extends to TMC the
General two-filter algorithm [16, Thm. 10.4.1];

— finally, one can show after some computations that equation (20) reduces to
an algorithm which extends to TMC an algorithm introduced by Weinert [20,
83.3] in the context of complementary models.
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