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Abstract. Recovering a set of independent sources which are linearly mixed is the main task
of the blind source separation. Utilizing different methods such as infomax principle, mutual
information and maximum likelihood leads to simple iterative procedures such as natural gradient
algorithms. These algorithms depend on a nonlinear function (known as score or activation function)
of source distributions. Since there is no prior knowledge of source distributions, the optimality of
the algorithms is based on the choice of a suitable parametric density model. In this paper, we
propose an adaptive optimal score function based on the fractional moments of the sources. In
order to obtain a parametric model for the source distributions, we use a few sampled fractional
moments to construct the maximum entropy probability density function (PDF) estimation . By
applying an optimization method we can obtain the optimal fractional moments that best fit the
source distributions. Using the fractional moments (FM) instead of the integer moments causes the
maximum entropy estimated PDF to converge to the true PDF much faster . The simulation results
show that unlike the most previous proposed models for the nonlinear score function, which are
limited to some sorts of source families such as sub-gaussian and super-gaussian or some forms of
source distribution models such as generalized gaussian distribution, our new model achieves better
results for every source signal without any prior assumption for its randomness behavior.

INTRODUCTION

The goal of Blind Source Separation (BSS) is to recover unknown independent source
signals from the observations. We consider a linear mixture of source vector as x = As,
where s, is the vector of the source signals, A, is the mixing matrix and x, is the vector of
the observed signals. We assume that the number of sources and the sensors are equal.
The aim is to recover the independent source signals, using a linear de-mixing model
y = Wx. The statistical approaches for solving the problem such as maximum likeli-
hood, InfoMax algorithm, Kullback-Leibler divergence and . . . , all would eventually
lead to some gradient based learning rules for updating iteratively the de-mixing matrix
W . The main problem in these learning rules, is to find an optimal stable choice of the
nonlinear score or activation function for various distributions. They commonly use a
fixed but nonlinear activation function resulting in an acceptable performance, however,
just for some specific sorts of source densities. In most BSS problems, the source dis-
tributions are classified as near-gaussian, sub-gaussian and super-gaussian models . The
well-known nonlinearities can only be applied for one of these density models. It can
be proven that [1] there exist adaptive nonlinear activation functions satisfying the sta-
bility condition of the learning rule and suitable for every source distribution model. In
this paper, we propose an adaptive score function by means of approximating the den-



sity function applying Shannon’s maximum entropy principle using fractional moments.
Unlike the previous common used nonlinearities, the proposed adaptive activation func-
tion can perform efficiently in every signal situation regardless of its distribution. If a
set of moments meet the Carleman condition [2] then a unique PDF can be determined
out of them. Moments are attractive because their computation is algorithmically simple
and uniquely defined for any signal; it can be carried out in parallel and therefore very
fast, and, since moments are global quantities, all available information is used mak-
ing moment-based methods less vulnerable to losses or changes of details than methods
that use few particular features of the signal. However, moments become very noise-
sensitive with increasing order. Hence, the lowest possible orders should be used in a
moment-based procedure. The classical moment based methods involves very few in-
teger moments. We describe how a very few fractional- and possibly negative-order
moments can be used to increase the accuracy of PDF estimation in MAXENT sense in
a generally distributed sources . However, all fractional moments may not equally be
suitable for estimating PDF of the signal. In this paper, we estimate the PDF of a sig-
nal adaptively using MAXENT method using the optimum FM. In our scheme we use
MAXENT method which has been involved in the solution of many statistical problems
and we use it to fit the PDF for signal. The chief assertion of the MAXENT PDF estima-
tion is that the most unbiased PDF is the maximum entropy distribution satisfying some
constraints which are usually a number of known moments, fractional or integer. The
best way to give a short introduction to MAXENT is to offer a quote from one of the
pioneers of these techniques, Edwin Jaynes [3]: The notion of entropy defines a kind of
measure on the space of probability distributions, such that those of high entropy are in
some sense favored over others. The maximum entropy distributions are “in some sense
favored” can be backed up by mathematically proving what has come to be called the
concentration theorem [3]. The result of this is that for a given set of constraints such as
moments or their functions, if there is a family densities that could give us our solution,
most of the solutions are concentrated, or close to the maximum entropy PDF. Thus, it is
our best guess to take MAXENT PDF as the distribution of the desired variate. This paper
is organized as follows. In section 2, a discussion about MAXENT PDF estimation based
on FM is provided, in section 3 we discuss the adaptive learning rules in BSS and the
well-known activation functions, in section 4 the new adaptive nonlinear score function
based on MAXENT fractional moment PDF estimation will be proposed, in section 5 we
provide the simulations of an experiment and results and some concluding remarks at
the end.

DENSITY ESTIMATION VIA FRACTIONAL MOMENTS

It is a well known fact that a finite set of moments does not allow to calculate PDF
of a random process. To get an unambiguous statistic, one has to approximate the
unspecified moments in some sense. One way to do this is maximization of differential
entropy. In this paper, we utilize the MAXENT principle as follows. Given the received
samples of a signal, we estimate PDF in MAXENT sense that matches the received
data. We note that the traditional MAXENT [3] approach is based on a give set of
moments or estimated sample moments to estimate PDF in MAXENT sense, but in this



paper, we find the best set of moments, fractional or integer, that fit the received data
set optimally in MAXENT sense. It is shown that MAXENT PDF estimation based on
fractional moments has better performance than integer moments [4, 5]. We consider
a positive random variable X with PDF f (x). Our problem is to maximize the entropy
functional H[ f ] =−

∫ ∞
0 f (x) ln f (x)dx subject to some FM µ j = {E(Xα j)}M

j=0 where the
FM based MAXENT PDF is given as follows

fM(x) = exp

(
−

M

∑
j=0

λ jxα j

)
, (1)

where λ0, · · · ,λM are the Lagrange multipliers corresponding to the following M FM
constraints

µα j = E(Xα j) =
∫ ∞

0
xα j fM(x)dx, j = 0, · · · ,M, (2)

where α0 = 0. Then the entropy is represented by

H[ fM] = −
∫ ∞

0
fM(x) ln fM(x)dx =

M

∑
j=0

λ jµα j . (3)

If we assume that F(x) and FM(x) are the cumulative distribution function for the
exact and MAXENT solution, respectively, it has been shown [4, 5, 6] that we have the
following bound for the difference between these two functions

sup
x∈[0,∞)

|FM(x)−F(x)| ≤ 3

√

−1+

√
1+

4
9
(H[ fM]−H[ f ]),

therefore, a convergence in entropy is translated into convergence in distribution. If we
define the divergence measure of two PDF’s as

∫ ∞
0 f (x) ln ( f (x)/ fM(x))dx, whenever

the two PDF’s have the same fractional moments we have
∫ ∞

0
f (x) ln

f (x)
fM(x)

dx = H[ fM]−H[ f ] (4)

Hence the two entropies converge to each other in the case of the FM’s equivalence.
Therefore we can always find an optimal choice for the fractional parameters α j [4, 5,
6]. We assume {x1, · · · ,xN} are the received samples, then, in order to determine the
parameters of fM(x) in (1), we implement the following optimization for j = 0, · · · ,M

min
α j,λ j

H[ fM] =
M

∑
j=0

λ jµ̂α j , µ̂α j =
1
N

N

∑
n=1

xα j
n . (5)

Also, it has been proven that the convergence to the exact PDF holds as M→∞ [5, 6].
Our optimization results show that applying FM instead of the integer moments causes
the MAXENT estimated PDF fM(x) to converge to f (x) much faster. For example in
Figure 1, we compare the resulting MAXENT density estimates by 5000 samples of a



Gamma distributed random variable with PDF f (x)= 1
Γ(a)ba xa−1e−x/b. Using the first

four sample integer moments, and two sample FM, that the optimization (5) determines
(0.8392,1.9289), we arrive at the following estimates for the PDF of Gamma distribution
with parameter a = 1,b = 1 for x ∈ [xmin = 0.0001,xmax = 10.2]

fM(x)= exp
(
−0.2155−0.5030x−0.3150x2 +0.0718x3 −0.0053x4) ,

fM(x)= exp
(
0.0984−1.10965x0.8392 −0.0362x1.9289)

Our comparative measure is the relative error defined as

relative error =
|True PDF−Approximated PDF|

True PDF
.

As it is shown in Figure 1, the PDF obtained via two optimized FM provide a better
accuracy over the MAXENT PDF estimator based on four integer moments.

ADAPTIVE LEARNING ALGORITHMS IN BLIND SOURCE
SEPARATION

Several information theoretic approaches yield the adaptive learning algorithms such
as[7]

Wj+1 = Wj + µ(I−g(y)yT )Wj (6)

for blind source separation and independent component analysis (ICA) problems. In
equation 6, µ is the learning rate and g(y) is known as the score or activation function,
it is a vector of nonlinearities dependent on the distribution functions of the observed
output signals. Instead of equation 6, the adaptive fixed point algorithms without any
learning rule can also be utilized.

The stability condition in the learning rule 6, depends on the form of the nonlinearity
g. For local stability, the signal must satisfy the equation [8]

E{g′(y)}E{y2}−E{g(y)y} > 0. (7)

After some manipulations, the optimal nonlinear score function will be obtained as [1]

g(y) = −
f′(y)

f(y)
(8)

where f is the probability distribution function of the observed signals. The above
equation can also be obtained by other classical methods such as Maximum Likelihood
or InfoMax [7]. The optimal activation function requires a prior knowledge of source
distributions which are usually unavailable. It has been proven in [1] that it is impossible
to find a fix nonlinearity suitable for all sorts of distributions, but there exists an adaptive
nonlinearity which can be suitable for all kinds of densities by changing the nonlinearity
function variables. There are some density models that lead to some nonlinear score
functions, which are widely used in ICA algorithms. These widely used nonlinearities



are usually appropriate choices for just some specific kinds of sources but they can not
be considered as suitable options for the other sorts of source distributions. For instance,
the fix cubic nonlinear activation function, g(y) = y3, has been known as an appropriate
choice for sub-Gaussian signals. The hyperbolic-Cauchy score function model, g(y) =
tanh(γy), where γ = 1/σ 2

y is another commonly used nonlinearity which is suitable for
super-gaussian source signals. The Gaussian, Laplacian, and the generalized Gaussian
density models are also used to form other score functions, however we should note
that these nonlinearities can only be applied to symmetric source densities but not to
the asymmetric distributions [15]. In [9] a Pearson system based activation function has
been proposed for a wide class of densities. The Pearson system score function is in the
form of g(y) = −(y−a)

b0+b1y+b2y2 . The unknown variables (a,b0,b1,b2) are easily obtained by
the method of moments[9]. The Pearson system based nonlinearity is just an appropriate
choice for source distributions which are close to normal distributions.

THE NEW ADAPTIVE NONLINEAR ACTIVATION FUNCTION

Since, there is no fixed nonlinearity able to satisfy all kinds of source distributions, we
look for an adaptive activation function adapting itself according to different densities
and being a suitable choice for all kinds of distributions. The optimal nonlinearity which
is in the form of 8, satisfies the stability condition of the learning rules algorithms.
Therefore, in order to obtain an optimal general adaptive score function we should try to
make a close estimate to the true PDF .

For this purpose we use the FM based MAXENT technique as a powerful tool for
density estimation. Since in BSS problems, after mixing the sources, the observed signals
may be negative, we will first use a transform without any discontinuity that makes the
random signal positive and then apply our method to estimate the PDF . For instance,
if we use the exponential transform, the new nonlinearity of the activation function for
each of the observed signals yi, simply takes the form

g(yi) =
j=M

∑
j=0

λ jα j exp(α jyi)−1 (9)

The new score function has a simple low order form and its coefficients will be obtained
adaptively according to the observed signals fractional moments.

SIMULATIONS AND RESULTS

We have set up an experiment with four independent sources of exponential density
family, mixing sources with Rayleigh(1), Gamma(1,1), Weibull(1.5,1.6) and Chi-Square
(with 3 degrees of freedom) distribution models. The sources will be transformed into
zero-mean variates and the mixing matrix will be generated randomly. In figure 2
we have shown the result of signal extraction using the FM MAXENT score function
(M = 2). We have compared in figure 3 our new nonlinearity performance with com-
mon widely used nonlinearities in FASTICA package[10], pearson system based score



function [9] and Jade algorithm [11] and also the ordinary MAXENT method [12] with
degree four . As a measure of quality performance, we utilize Amari’s measure "inter-
channel interference"(ICI) defined as [15]

J(P) =
1

Ns

Ns

∑
i=1

∑Ns
k=1 |pik|

2

maxk |pik|2
−1 (10)

where pi j are the matrix P = WA arrays and Ns is the number of sources. In figure 3
the ICI measure performance of various nonlinearities versus the number of samples
are plotted. In each case, the performance has been averaged for 1000 realizations.
In our simulations the number of iterations in the updating learning rule is set to 10
times. As it can be seen, the new adaptive activation function has a significant amount
of performance improvement in contrast to the other well-known ones.

CONCLUSION

In this paper we have proposed a new adaptive nonlinear activation function . This
new score function is based on the MAXENT PDF estimation by means of the optimal
FM. The new simple form of the activation function performs better than the existing
blind ICA approaches regardless of the source distribution models. We compared our
experiment with the well-known BSS algorithms with various nonlinear score functions.
The results show a promising performance using the new adaptive nonlinearity.
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FIGURE 1. Comparison of MAXENT density estimates for a Gamma distributed random variable(a =
1,b = 1), using four integer moments, and two optimum FM.
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FIGURE 2. Signal extraction result using the MAXENT FM score function (M = 2), the sources
are Rayleigh(1), Gamma(1,1), Weibull(1.5,1.6) and Chi-Square (with 3 degrees of freedom), distributed
which are transformed into zero mean variates,the number of samples is 1000, the number of iterations in
the updating learning rule is 10, the figures show the four normalized zero mean sources in the first row
and the mixed observed signals in the second row. In the third row the separated and the source signals
have been shown in a same plot.
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FIGURE 3. Comparison between the performances of different algorithms in BSS versus the number
of samples, the mixed sources distributions models are Rayleigh(1), Gamma(1,1), Weibull(1.5,1.6) and
Chi-Square (with 3 degrees of freedom), the number of iterations in the updating learning rule is 10.The
Performances are averages over 1000 realizations.


