Competitive Bidding in a Certain Class of
Auctions

Mathias Johanssdn

Sgnals and Systems Group, Uppsala University, Seden,
e-mail: mj@signal.uu.se
Dirac Research AB, Sveden, e-mail: mj@dirac.se

Abstract. We consider the problem of determining the amount to bid ieréain type of auctions
in which customers submit one sealed bid. The bid reflectpilhe a customer is willing to pay for
one unit of the offered goods. The auction is repeated anddit auction each customer requests
a certain amount of goods, an amount that we call the capatitije customer and that varies
among customers and over time. At each auction, only themest with the largest bid-capacity
product obtains any goods. The price paid by the winner scuialher bid-capacity product, and
the amount of goods obtained in return equals the winnepadity. The auction is repeated many
times, with only limited information concerning winningdscapacity products being announced
to the customers. This situation is motivated in for exanwileless communication networks in
which a possible way of obtaining a desired service level isse dynamic pricing and competitive
bidding. In this application, the capacity is typically @n@in when the bid is made. We derive
bidding rules and loss functions for a few typical servioguieements.
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1. INTRODUCTION

We here consider a bidding situation in which customers @iefor a resource which
can only be used by one customer at a time. The resource<ardertain utility, the
capacity of the resource, which varies over time and is different atecompetitor. For
instance, the capacity may in a mobile telecommunicatiebtsork be the time-varying
data rate over the communications channel.

Each competitor submits one sealed bid. After all bids haenlzollected, a winner is
announced who gets access to the resource for a certaineimoel and thereby receives
goods according to that customer’s capacity. For the nexighea new auction is carried
out again under similar circumstances.

If the winning bid wagy and the capacity of the winning customer weathe winning
customer pays|c monetary units, i.eq is the price per unit utility. The auctioneer’s
income for each auction is thgg, and the winning customer is the one with maximum
price-capacity produajc.

Our problem set-up is the following:

- Different biddersu may have different capacitieg

« Each biddet reports its own capacitg, to the auctioneer along with its big,.
Both values are hidden for other customers.

« Although all information reported to the auctioneer is sdah bidder obtains some



implicit information regarding other bidders’ capacitisd bids from how many
times the bidder wins the auction. The bidder does howevigkmaw who wins an
auction that is not won by the bidder, nor, in that case, thenimg price-capacity
product.

« The auctioneer knows all bidders’ capacities and bids.

The question we seek to answer is then: What is the best bicatbhastomer can
make? Clearly, the answer depends on the customer’s needgacity, and — having
established a loss function describing this — any inforama#it hand that can assist in
reaching a decision. This type of problem was consideredriggiman [1] in 1956, and
a similar strategy as the one we will use here was suggestiedinfan considers the
objective of bidding for maximum expected profit in a scemavhere a government
agency invites a large number of companies in the same nydigsbid for contracts.
Friedman notes that "the difficulty in determining the expédgtrofit lies in determining
... the probability of winning as a function of the amount'bitle suggests the use of
histograms of bids from old auctions, assuming that all ijorev bids are made public
after an auction. In our scenario, we do not assume knowletig# previous bids. In
many auctions, only the winning bids are announced and thedrRan’s method fails
to determine a probability distribution for the other custrs’ bids. From our present
understanding of probability theory as logic, however, sbtution is straightforward.
As always, a probability distribution should not reflect dtdquencies but carry all
information, and lack thereof, that we actually have conitgy the unknown event.
In our specific scenario, the information we assume to be ssg@ssion of will lead
to a maximum entropy problem. In general, additional infation should be processed
through Bayes’ rule.

The problem formulation has a motivation in mobile commati@ans, where it has
been suggested that one way of obtaining different senégeld is to use dynamic
pricing and competitive bidding. There, the capacity istihieate that a user can receive
or transmit data with. In such a network, prices would desgeahen the network is
under-utilized or the user is near a base station vatelversa. Before proceeding to the
technical derivations, let us first take a concrete examipleebauctioning procedure.

Example: Two users compete for access to a wireless communicaticarmeh In
any time slot (on the order of milliseconds), only one usey mecess the channel. To
maximize revenues, the base station transmits data to g#readsch pays the highest
total price for access. At a certain time dlptiser 1 can receivg (t) = 100 bits of data
and decides to bid = 0.1 per bit, i.e. the total bid-capacity product is 10, wheneser
2 has a capacitg(t) = 80 and bidsyy(t) = 0.2 per bit, giving the bid-capacity product
16. The bids and capacities are transmitted to the baserstati a separate control
channel (the bids would typically not be updated over a nurobeonsecutive periods,
thereby alleviating the need for a high-rate feedback ceBnNeither user knows the
other user’s bid or capacity. The base station receivesfioemation from both users
and awards the next slot to user 2 who has the highest bicitgpaoduct. Finally, on
a regular basis the base station broadcasts some aggregestics of the winning bid-
capacity products, which will be described in later partshef paper. The users adjust
their bids according to this information and the processeated.



2. ABAYESIAN STRATEGY FOR COMPETITIVE BIDDING

Our approach is to minimize the expected loss conditionaheriimited information
available to the customer. Let a particular customigmprobability that he or she will
have the largest bid-capacity product of all customers betdel byP(u | I). Then
P(u|l) is equal to the probability that the customewith the largest bid-capacity
product of all other customers has a lower bid-capacity pcothan customeu. Let gy
denote the bid o¥, ¢, the corresponding capacity, ape-= gyc, the largest bid-capacity
product among all customers excepiWe can then find the probability thatwins as
follows: first determine the probability that< c,qy assuming knowledge df,, i.e.
"W P(y | ¢yl )dy. Then multiply this with the probability distribution fax, given| to

obtain the joint probability foc, andy < c,qy. Integrating the result over all possible
capacitiexy, we have

cud

0

Pl1) = [P(eal 1) [ Ply| culdyey. @

In order to determine this probability distribution we miiss$t find the probability
distribution forcy and that fory. We will consider a general case in which the capacities
cy may be unknown in advance, as that is often the case in matmhenzinications. If
the capacity is already known the solution simplifies stifywardly.

Assume that there ak€ different possible capacitieg. We suppose further that each
customer stores the number of time slots that each capacitpuld be used during
a recent time window. If nothing else than these numbers aogvk, the probability
that the customer’s capacity will bg is then the expected frequency with which that
capacity will be used. According to Laplace’s rule of susoas, see [2], Chapter 18,
the probability for having the capacity is

ng+1
P(ck|l)_N+K, (2)
wherenyg is the number of time slots over the Iadtrecords that capacitg (but not
higher) could be attained.

Now, the distributionP(y | I) of the other customers’ best price-capacity product
depends heavily on the informatibthat customeu possesses. We will here assume that
the auctioneer periodically broadcasts the expected winprice-capacity product for
the coming period along with a measure of the prediction tdaigy. The simplest such
scheme would consist of recording the average of the mosht&dinning price-capacity
products and its variance. More advanced schemes includendaing a model for the
time evolution of price-capacity products. Here, we wilbasie that an expectation is
available along with a variance for the prediction. These gwantities are broadcast to
all users at regular intervals.

With no other knowledge than the mean and the variance ofiabtar the least biased
probability distribution according to the maximum entrgpynciple is Gaussian. Thus,

we shall take
PY|1)= exp{——212<y—uy>2} , (3
V 210y Oy




with py denoting the expectation of and 0)? the variance of the distribution. Here,
by not truncating the distribution at zero we have assumad ttre variance of the
distribution is not too large compared to the mean, so thattafil of the distribution
belowy = 0 is negligible. It should also be pointed out that we are thlElmean and
the variance ofll winning price-capacity products, which includes thoseemvhen
customem won. However, we should actually determine a distributionthe winning
price-capacity products of all customessept u. Below, we discuss how to adjust the
mean and the variance to subtract out the contributions trestomeru. It is however
not clear in general that this distribution, having excldidee of the components, should
also be Gaussian. We have good reason to use a Gaussidoutistrif there are many
bidders with independently and symmetrically varying eft@apacity products around
some mean. Now, the bids are not logically independent aaficistomers base their
decisions on partly the same information. On the other h#rel capacity variations
will often, for instance in the mobile communications saemalescribed above, be
independent among customers, which to some extent will havandomizing” effect
on the price-capacity products. Nonetheless, we may algiatcorrelated distribution
might be a better model. We will leave this alternative aguécttor future research, and
here continue to work with the Gaussian model.

Inserting (2) and (3) into (1) (replacing the integral oggwith a sum, reflecting that
cy is discrete) we obtain
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where erf¢x) =1 — \/%_Tf(’)‘exp(—tz)dt IS the complementary error function.

2.1. Typical loss functions

Different customers may have different service demandsh&ve propose a number
of loss functions that are intended to reflect typical regmients. The loss functions
would moreover often be supplemented by a constraint on themum allowed bid.

2.1.1. Constant demand

A customeru wishing to obtain a certain amougt of goods over the cominly time
slots should use

L(Qu, Xu(Qu)) = [Xu(Qu) — @ , (5)

wherex,(qy) is the actual amount of goods that the user will obtaindgmonetary
units.



2.1.2. Price-performanceratio

A customeru may wish to increase his bid if that bid would result in a sigaintly
increased amount of delivered goods. In some sense, theeperdormance ratio should
be optimized. A possible formalization is the following: Aige increase of 1 unit is
acceptable given that the amount of goods obtained theeases by at least a factar
Then the following loss function should be used.

aQdu
L(qu, X = 6
(qu U(qU>> maX(Xu(qu), b) ( )
wherex,(qu) is the actual amount of goods that the customer will obtaigfononetary
units. If x,(qu) > b then an increased bidy — gy + 1 will result in a lower loss if and
only if xy(qu+ 1) > axy(qu), because then we obtain

aQU+1 atn
<
Xu(Qu+1)  Xu(Qu

The formulation (6) also includes a minimum acceptableveeyi size; if the user is to
pay more than 0 monetary units per bit then the throughput satsfyx,(qy)/a% > b.

For example, if the customer requires at least an amount oh&8 per time slot, and
if a price raise of 1 unit is acceptable only if the obtaineddmthen double, the loss
function is 2t /max(xy(au), 50).

L(Qu+1xu(qu+1)) = ) = L(qu, %u(qu)) - (7)

2.2. Making the decision — expectations and computations

The expected throughpit,(qy)) per time slot as a function of the bag is

K
n+1 1 Hy — QuCk
Xu(Qu)) = ) ckx —— x zerfc| =——] . (8)
Similarly, the expected loss using the loss function (5) is
K
K+1 1 Hy — QuCk
L(qu)) = Ck— Q| X —— x zerfc| =———| . 9

The expected loss using (6) involves determining the espiect of 1/x, for the
Gaussian-distributed uncertainty xf, an expectation which is not available in closed
form. We shall instead use the expected valueodirectly in (6), thus obtaining a
suboptimal solution that does not fully account for our attincertainty in making the
bid. The estimated lods(qy) is then

Do) =2 (10)
max((Xu(qu)),b)




where(x,(qu)) is defined in (8).

Recall thaty is the winning price-capacity product of all customexsept customer
u. In calculating the best bid, a customer must thereforesadhe variance and the
mean of the distribution for the best price-capacity pradiiece these quantities are
broadcast and based on all customers. These adjustmempsiterdifficult to carry out
for a customer who has been awarded all or almost all resewuwer the last period.
Usually, however, we would expect that there are many d@iffecustomers who obtain
at least some goods, and then the following adjustments magéd.

The averageiy is estimated from the broadcast valug (the average of the winning
bids) by

_ i —qut—Dxu(t—1)

I —1y
wherel is the number of time slots between consecutive price updatis the number
of time slots that customar won, andqy(t — 1)x,(t — 1) is the sum of customeu’s
price-capacity products for tHgtime slots that were won by customein the previous
period ofl slots.

Similarly, the variance is estimated by

Hy (11)

o2 —1yo2(t —1)
2 W uty
Uy— |_|u (12)

wherea? is the sample variance for the price-capacity product aforusr u in the slots
that this customer won.

In order to compute the minimum of either of the two expectess lexpressions (9)
and (10) a numerical one-dimensional search is carried ingLe.g. the Nelder-Mead
simplex algorithm [3].

3. EXAMPLES

We now consider the performance of the scheme outlined snpdwer based on simu-
lations of the mobile communications scenario mentioneithénintroduction. Assume
one transmitting base station add= 4 competing users. With a periodicity nf= 20
time slots, i.e. every 20th auction, each mobile user updiédebid and submits it to
the base station. An upper limit on the b, < 5, is also assumed. There &e= 4
different transmission rates, i.e. capacities, and eaehdetermines and tells the base
station the capacity that can be used in the next time sla&dbas channel measure-
ments. The base station then transmits exclusively in eaghdlot to the user with the
highest price-capacity product. There are four differepacities (bits per time slot),

c1=0 =74 c3=92 c4=106 (13)

In the simulation, the actual capacities for each user i ¢iate slot are drawn from
a random number generator, with equal but independenstitat{quantized Gaussian
with mean 80 and standard deviation 20) for each user. Foe metails on how to
determine proper capacity levels in a network, please sept@h@ of [4]. The capacity
probabilities (2) are updated continuously as more datarbes available.



FIGURE FIGURE 1. (a) The evolution of the bids for the four users with desirags 15, 20, 20 and
30 respectively. (b) The obtained throughput per time sothe four users. (c) The evolution of the bids
for the four users with desired rates 15, 20, 25 and 30 reispct(d) The obtained throughput per time
slot for the four users.

We first consider a case where all four users have a desieegdeatime slot according
to
m=15 =20 @w@=20 @=30 (14)

and attempt to minimize (9). Figures 1 (a) and (b) show theltieg bids and obtained
throughput per time slot from this test in a simulation lagtior 600 repeated auctions
(i.e. 30 price-update intervals). The plotted results aerages from 25 simulations.
The average obtained rates over the entire simulated peroe found to be close to
the desired rates:

x1=14 X =21 x3=21 x4=33 (15)

Under otherwise similar circumstances, Figures 1 (c) afdlidw the bids and the
obtained capacities when the desired rate of user 3 wasaseteto 25 bits per time
slot, yielding a more competitive setting. Here, we see thatprices tend to increase
because the users have trouble obtaining the desiredygoélgervice. The average
obtained capacity per time slot over the entire simulatetdenow becomes

=13 % =19 x=26 X =31 (16)

In a similar setting as the previous one, we now let user 1rmmz& the approximate
expectation (10) of the price-performance-related logk ai= 2 andb = 8. Recall that



FIGURE FIGURE 2. (a) The evolution of the bids for the four users with user limining the price-
performance-related estimated loss (10) and the othes eseploying (9) with desired rates 10, 20 and
20 respectively. (b) The obtained throughput per time sbottlie four users. (c) The evolution of the
price-to-performance ratio (the bid divided by the obtditleroughput) for the four users.

use of this loss means that a 1-unit price increase is addepaaly if it leads to more
than a doubling of the obtained throughput. Only if the tiglooput becomes more than
2% x 8 bits is a non-zero bid, preferable. Users-24 continue to minimize the expected
loss (9) for a desired rate per time slot of

®»=10 @=20 @ =20 (17)

In Figures 2 (a), (b), and (c), the bids, obtained througlapgtthe price-to-obtained-
throughput ratio (PTRY,/X, are plotted as a function of time. The results are averages
from running a simulation consisting of 1800 auctions 258mrhe average obtained
throughput per auction in this case becomes

X1=34 =11 =21 x=21 (18)

where we see that users-2} obtain rates corresponding well to their preferencesnFro
Figure 2 (c) we see that user 1 achieves the lowest PTR wialeghr with the lowest
rate requirement has the worst PTR.

All'in all, the performance examples show that the biddimgtsgies seem to function
well, but it should be noted that a full analysis of the bebawif the bidding policies is
extremely complex and has not been carried out here. Theigugl bidder, in trying
to make a reasonable bid in terms of his/her loss functiosedis/her decision on
information which is different for different customers @aeise the estimates of the other
users’ best price-capacity products become differentifterént users depending on the
number of wins for that customer). Therefore, the behavemones very complex and
hard to predict. We need to find better theoretical meansuidn & deeper analysis.
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