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Abstract. A maximum entropy approach to estimation of statistical properties of random media
through indirect probes is analyzed. It is shown that there is an explicit link between the probe
response to an external driving and the information rate. This allows one to relate the response
specificities (singularities or inflection points) to the amount of information on the surrounding
medium. Advantages of the maximum entropy approach in recovering the power-law distributions
under physically justified constraints are demonstrated.
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INTRODUCTION

Characterization of disordered media through indirect probes is one of the methods
being extensively developed in the context of adsorption into porous matrices [1] or on
heterogeneous surfaces [2]. Essentially similar problems appear in various fields, from
sociology to astrophysics. In a quite broad sense a random medium can be represented
by a probability distribution f(σ) of some relevant quantity, σ. The distribution is a
priori unknown. In order to determine it, the medium is coupled to a system with a
known response function θ(µ|σ), conditional to the medium state σ. In other words, we
deal with a driven deterministic (in terms of statistical mechanics or thermodynamics)
system in contact with a fluctuating background. The system relaxation to an equilibrium
(or stationary) state is usually much faster than the medium fluctuations. Then the
experimental data θ(µ) can be represented as an average over the medium (background)
fluctuations. For concreteness we consider a continuous spectrum of σ

θ(µ) = θ(µ|σ) =
∫

dσf(σ)θ(µ|σ) (1)

where µ is the driving parameter and the overline denotes the averaging. Adsorption
in porous matrices could serve as a prototypic example, where θ(µ) is an adsorption
isotherm, f(σ) is a pore size distribution and the driving parameter µ is the adsorbate
chemical potential or pressure.

Therefore, one deals with an inverse problem of extracting f(σ) from θ(µ). Several
theoretical schemes have been developed in this context. One of the simplest approaches
is to assume a given functional form of f(σ) with a set of adjustable parameters [2, 3, 4],
which can be found from a reasonable fit to the data through eq. (1). Despite of its



conceptual simplicity a predictive power of this technique is quite low, because there is
no systematic link between the input functions θ(µ), θ(µ|σ) and a large number of fitting
parameters. Nevertheless, in some cases [4] a fitting to inflection points in θ(µ) gives
quite stable and reasonable predictions. Assuming that the kernel θ(µ|σ) is Langmuirian
and that the data θ(µ) are known as an analytic function, Sips has shown [5] that, in the
framework of eq. (1), θ(µ) is a Stieltjes transform of f(σ). This gives a straightforward
evaluation of the distribution, provided that the transformation exists, but the method is
bound to a quite limited set of the kernels θ(µ|σ). Another set of methods treats eq. (1)
numerically, as an integral equation for f(σ). In general, this is an ill-posed problem,
that may have no or many solutions depending on a combination of θ(µ) and θ(µ|σ). On
the other hand, the solution is inavoidably affected by a noise (e.g., due to experimental
errors) in θ(µ). Such that small variations in the data can produce large errors in the
solution. In order to overcome this problem one usually invokes additional conditions
derived from some prior knowledge on the solution. One of the widespread procedures is
the linear regularization [6] which involves damping parameters and, thus, subjectively
deforms the solution. In addition, this method requires the data θ(µ) for a very large
range of the drivings µ, that is not always accessible experimentally. A maximization of
information entropy (MaxEnt) [7] is an alternative approach to retrieving a distribution
from the constraint (1). This is an inductive inference method, based on a Bayesian
interpretation of probabilities [8], that allows to make predictions under conditions
of incomplete information [9]. Despite of numerous applications of these methods in
a variety of domains [9, 10, 11, 12, 13, 14] some key features still remain poorly
understood. This generates a series of questions specific to the MaxEnt approach as
well as of general importance for the characterization problem.

THE SCOPE

In this paper we are attempting to address some of these questions. Namely, why in some
cases the MaxEnt procedure requires fewer data [10] than other (e.g. regularization)
approaches and what are the conditions for that. What is the information content of
the data and how does it permit [1, 2] to estimate the distribution characteristics even
without entering into fine details of the kernel θ(µ|σ). What is an optimal choice of the
kernel. In particular, why a fitting to inflection points in the data θ(µ) gives reasonable
predictions [4] and why a derivative kernel

χ(µ) =
∂θ

∂µ
=

∫
dσf(σ)

∂θ(µ|σ)

∂µ
(2)

is usually preferable [6] over the constraint (1). Finally we demonstrate the efficiency
of the MaxEnt approach in combination with the concept of superstatistics [15, 16] in
explaining the ubiquity of power-law distributions in natural systems.



CONDITIONAL DISTRIBUTION

First of all let us note that whatever method of retrieving the distribution from the data
θ(µ) through eq. (1) should give a conditional distribution f(σ) = ϕ(σ|µ). That is, the
distribution is conditional to the driving µ. This has important consequences. Having
found the distribution we can use it to predict averages of other σ-dependent quantities,
like χ(µ|σ) = ∂θ(µ|σ)/∂µ

χp(µ) =
∫

dσϕ(σ|µ)χ(µ|σ) (3)

On the other hand, ϕ(σ|µ) is found from the condition that eq. (1) becomes an iden-
tity. Such that, differentiating the data χ(µ) = ∂θ(µ)/∂µ, we obtain the experimental
counterpart as

χ(µ) = χp(µ)+
∫

dσ
∂ϕ(σ|µ)

∂µ
θ(µ|σ) (4)

Therefore, the observed response differs from the predicted one, because the distribution
changes with the driving µ. Note that this is a general result, independent of the method
used to retrieve the distribution from eq. (1). In what follows we will show that the
MaxEnt inference procedure can give a deep insight on the origin and the meaning of
such a disagreement.

MAXIMUM ENTROPY APPROACH

In this paper we deal with the inversion of eq. (1) in the framework of the maximum-
entropy inference scheme, developed by Jaynes [7, 8]. We assume that no prior infor-
mation on the medium is available. Our uncertainty on the background state can be
estimated by an information entropy, which is taken here in the Shannon form

H =−
∫

dσf(σ) ln[f(σ)] (5)

Maximizing H under the constraint (1) and requiring the normalization for f(σ) we get
the following conditional distribution f(σ) = f(σ|µ) [14]

f(σ|µ) =
eκθ(µ|σ)

Z
; Z =

∫
dσeκθ(µ|σ) (6)

where the Lagrange multiplier κ should be found from the constraint (1). Note that
f(σ|µ) should be considered as an aposteriori distribution because it is based on the
observation θ(µ). Therefore, plugging the distribution (6) back to (5) we obtain the
amount of uncertainty H(µ) on the medium state

H(µ) =−κθ(µ)+ lnZ

If the initial (before the subsystems contact) uncertainty is H0, then the amount of
information [9] I(µ) on the medium, one can get by driving (e.g. through varying µ)



the deterministic subsystem is given by a reduction in the uncertainty

I(µ) = H0−H(µ)

Differentiating, we obtain the information rate

∂I(µ)

∂µ
= κ

∫
dσ

∂f(σ|µ)

∂µ
θ(µ|σ) (7)

Combining this with an analog of eq. (4) we arrive at a remarkably simple and extremely
useful result

∂I(µ)

∂µ
= κ [χ(µ)−χp(µ)] (8)

which gives an explicit link among the information rate, the observed response func-
tion χ(µ) and the model estimation χp(µ) = ∂θ(µ|σ)/∂µ. This allows us to analyze the
impacts of these ingredients to the information on the medium. In particular, requiring
the consistency in (4) : χ(µ) = χp(µ) is equivalent to ∂I/∂µ = 0, that is, to a necessary
condition for a maximum of I(µ). Therefore, in order to extract a maximum of infor-
mation at all µ (for given data θ(µ) and the model estimation θ(µ|σ)) one has to require
χ(µ) = χp(µ), which is equivalent to imposing the differential kernel constraint (2).
However, for practical purposes this strategy is limited if the data θ(µ) contain a noise
(e.g., because of experimental errors). In that case the data differentiation enhances the
noise contribution, that, depending on its intensity and frequency, might lead to spurious
reflexes in the distribution.

Our result (8) also gives a useful insight on how to choose θ(µ|σ). Of course, one
may try to guess at random until a satisfactory agreement between χ(µ) and χp(µ) is
achieved. A more constructive way is to satisfy the condition χ(µ) = χp(µ) locally, i.e.
on a set of characteristic points {µk}. Then it is clear that the easiest way to do that
is to focus on the points µk where the condition ∂I/∂µ|µ=µk

= 0 is satisfied trivially,
because both χ(µk) = 0 and χp(µk) = 0. The latter is a necessary condition for a plateau
or an inflection point in θ(µ) and θ(µ|σ). This explains why a fitting to the inflection
points [4] allows to make reasonable predictions. Note that the specificities (steps, kinks,
inflections, plateaus, etc.) of the data θ(µ) are attributed to some physics. In the context
of adsorption probes [1, 2, 4] these peculiarities reflect different adsorption or packing
regimes [2, 4]) with some microscopic picture behind. Therefore, it is remarkable that
our result (8) translates this physics directly into the required information.

On the other hand, it is not always possible to work under conditions close to a maxi-
mum of I(µ). The plateau in the data could be absent or hardly reachable and the model
θ(µ|σ) is not always exhaustive. In that case it is desirable to find a way of estimating
the distribution characteristics in a limited range of drivings µ and in the absence of a
detailed microscopic model θ(µ|σ). From eq. (8) we see that I(µ) undergoes remarkable
changes in a range of µ where χ(µ) has a strong maximum (θ(µ) makes a step). In that
case even a rough estimation of θ(µ|σ) with a non-singular χp(µ) is sufficient for a rapid
evaluation of at least some background characteristics. Then a limited number of points
(limited range of µ) around the data singularity could be enough for retrieving a correct
overall picture. Namely this trick is applied for characterizing porous media [1] or het-
erogeneous surfaces [2] through adsorption probes. The technique consists in a driving



an adsorbate close to the condensation or freezing point (in that case the compressibil-
ity χ(µ) diverges) which are sensitive to the mean porosity or heterogeneity. It is worth
noting again that the MaxEnt result (8) is capable of a straightforward explanation of
this experimental fact from a quite general point of view, even without entering into the
physics of these phase transitions.

POWER-LAW DISTRIBUTIONS

Despite of the apparently exponential form (6) the actual behavior of f(σ|µ) depends on
the nature of the constraint imposed and on a form of the constrained function θ(µ|σ).
Such an ambiguity should not be considered as a shortcoming of the theory. This is a
consequence of the fact that we are working under conditions of incomplete information.
Then, according to the Bayesian interpretation [7, 8], a probability should be considered
as a measure of our ignorance rather than an objective property. Nevertheless, our
freedom in choosing the constraints is restricted by the nature of the problem under
consideration. In other words, there are constraints which are "naturally" imposed either
as design principles [17, 18] or as experimental conditions. In the context of adsorption
in porous media [1] the constraint (1) reflects the experimental conditions of measuring
the adsorption isotherm. From another point of view θ(µ) could be considered as a
"target" function [19]. In this case the problem is to find a distribution leading to a
given average response θ(µ). In particular, in many applications (such as optimal control
[20]) it is desirable to constraint the system internal order with the purpose of meeting
some survival or functionality objectives. Then it is natural to restrict the phase space
by constraining the thermodynamic entropy S(ρ|β) (ρ is the number density, β is the
inverse temperature). This idea was shortly discussed in a slightly different context
[14, 17, 18, 19]. Therefore, in our previous treatment we replace θ(µ|σ) by S(ρ|β),
and θ(µ) by Σ(ρ). Then the distribution (6) closely resembles the Einstein fluctuation
formula. Note however that f(β) describes the background fluctuations and for κ = 1 it
becomes identical to the distribution of the system fluctuations. In particular, for small
fluctuations around an equilibrium state (ρ,β∗) we may expand

S(ρ|β) = S(ρ|β∗)− 1

2χ(ρ,β∗)
(β−β∗)2 (9)

where χ(ρ,β∗) = 〈(β − β∗)2〉 is the mean-square fluctuation in the system when the
background state is fixed at β = β∗. In this approximation the distribution (6) becomes
gaussian and κ can be determined combining (9) and (1). Finally we arrive at

(β−β∗)2 = 〈(β−β∗)2〉 [S(ρ|β∗)−Σ(ρ)] (10)

Note that S(ρ|β∗) is the system equilibrium entropy. Consequently S(ρ|β∗)−Σ(ρ)≥ 0
and (β−β∗)2 ≥ 0 as it should be. Therefore, in order to ensure a given response, Σ(ρ),
the background should fluctuate coherently with the system fluctuations and with the
distance from the equilibrium state. As we will see below, for large fluctuations this
tendency also takes place. A quite similar trend has been reported [21] for fluctuations



in the Tsallis statistics [22]. In the limit of S(ρ|β∗) = Σ(ρ) we return to the standard
equilibrium without fluctuations in the background: f(β) = δ(β − β∗). The system
fluctuates according to its response function χ(ρ,β∗).

In order to study large background fluctuations and the system statistics at different
time scales we have to introduce an explicit form for S(ρ|β). With this purpose we
consider an exactly solvable toy model – the ideal gas in contact with a reservoir of
fluctuating temperature [15, 16]. This choice is motivated by our goal to extract the most
general and essential features, independent of approximations or the system correlations.
Therefore, we deal with the entropy per particle S(ρ|β) = 5/2− ln(ρΛ3). Here ρ is the
number density, β = 1/kT is the inverse temperature and Λ is the thermal de Broglie
length. Introducing irrelevant scaling constants (making ρ and β dimensionless), S(ρ|β)
can be reduced to

S(ρ|β) = const− ln(ρ)− 3

2
ln(β) (11)

Constraining the average temperature

β0 =
∫

dβf(β)β (12)

and the entropy
Σ(ρ) =

∫
dβf(β)S(ρ|β) (13)

through the inference procedure discussed above, we obtain the following distribution

f(β) =
βκe−β/β(κ)

[β(κ)]κ+1Γ(κ+1)
; β(κ) =

β0

κ+1
(14)

which is precisely the Γ-distribution considered in the superstatistical approach [15, 16],
where the exponent κ is related to the noise intensity. In our case the Lagrange multiplier
κ should be determined from the entropy constraint (13)

Σ(ρ) = S(ρ|β0)+ ln(κ+1)−Ψ(κ)− 1

κ
(15)

where Ψ(κ) = d lnΓ(κ)/dκ. Thus, the exponent κ is determined by the distance Σ(ρ)−
S(ρ|β0) from the equilibrium state (ρ,β0). In particular, for large κ we have found

Σ(ρ) = S(ρ|β0)+1/(2κ)

Therefore, κ is related to the deviation from the standard equilibrium, such that f(β)→
δ(β−β0) and Σ(ρ) = S(ρ|β0) as κ→∞.

At the short-time scale (of the order of the system relaxation time) the conditional
energy distribution (E = p2/2m, at a given temperature β ) is Gibbsian

f(E|β) =
e−βE∫
dEe−βE

(16)

The long-time behavior of the dynamic system can be represented as a superposition of
its short-time statistics and the background fluctuations – the superstatistical approach



[15, 16]. In this spirit the long-time energy distribution can be found by averaging over
the temperature fluctuations

f(E) =
∫

dβf(β)f(E|β) = β0

[
1− β0E

1− q

]−q

(17)

where q = κ+2. For E = p2/2m we recover the power-law velocity distribution found
[15, 16] in the superstatisical approach. Quite similar effects have recently been pre-
dicted to occur in driven dissipative inelastic gases [23] and in driven stochastic systems
with multiplicative noise [24] or fluctuating mass [25]. In a different context similar
power laws where found, applying the maximum-entropy inference to parameterized
entropies (Tsallis [22], and Renyi [12]). But the meaning of the entropic parameter is
not always clear, while in our case q is directly related to the constraint imposed.

Thus, because of the constraint, imposed on the internal order at longer times the
system develops avalanches (or energy cascades) at any finite κ. The avalanche size
is characterized by 1/κ. Therefore, maintaining the distance from the equilibrium, one
can control the size of the rare "catastrophic" events. This can be organized in different
ways, such as by powerful energy injections at large velocity scales [23], or through an
interplay of additive and multiplicative noises [24].

CONCLUSION

It is shown that the MaxEnt inference approach establishes an explicit link between
the amount information on a random medium and a difference of the probe response
function and its model estimation. This allows to translate the response specificities into
the information rate without entering into the microscopic details determining the probe
behavior.

We have found that the major ingredients, relevant to the power-law distributions in
composite systems are (i) the widely separated times scales, (ii) non-vanishing back-
ground fluctuations. (iii) a constraint, imposed on the overall system, holding the dy-
namic counterpart in a stationary non-equilibrium state.

The main advantage of the approach developed here is that it avoids parameterized
entropy measures and allows one to apply the superstatistical scheme to coupled systems
in which the stochastic background does not fluctuate independently of the dynamic
counterpart.

In the context of our study the nonextensitivy in systems with power-law distributions
is a direct consequence of the "global" nature of the constraint. This makes it impossible
to decompose the system into non-correlated parts.
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