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Abstract. Already in 1998 we presented on a MaxEnt conference a Bayeswlel comparison
for the confinement scaling of fusion devices [1]. The reasovisit this field again is an over the
years enlarged data basis facilitating new physical insidive compare up to ten physical models
on the basis of the old (lov#) data of the 1998 approach and newly acquired highata. This
work serves as an example where the prior odds cannot be is&tod (as would be the normal
procedure) but has to be furnished with physics information

INTRODUCTION

In the work of 1998 [1] we examined confinement data of one efftision devices in
Garching, the W7-AS stellarator. Due to the machine coowitiat that time the data
was mainly of collisional low3 character (wherg is the ratio of the kinetic pressure
of the plasma and the magnetic field pressure exerted by theléb magnetic field).
The type of the data was successfully identified by a modelpasison from a choice
of four models distinguishing between collisionlessfsudinal and low-/highs plasma.
Furthermore, the method was capable of predicting the owtanf single variable scans
not contained in the data base. Since then, several expgaheampaigns in W7-AS
have explored the high-regime. It is expected that the interpretation of these nata d
requires a different description and hence a new model isssacy as compared to the
low-( regime.

The physical models emerge from dimensional constraintshenexponents of a
scaling function over the confinement energy. These dimensional constraints are
related, e.g., to the influence of collisions among the paparticles, charge neutrality
or 5. As operation parameters entering the scaling functioresiie electron density,
toroidal magnetic field3, absorbed poweFP and the effective minor radius
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The invariance principle of Connor and Taylor [2] statest tifidhe confinement of
plasma is described by the equations of some particulamalasodel then a confine-
ment time calculated from that model must reflect any invexéaproperties of those
equations, no matter how complex the calculation. Thus layremxing the linear trans-
formation behavior of such basic equations like the Folarck equation or Maxwell
equations one can derive constraints on the above scalpanerts. For instance, tak-



TABLE 1. Connor-Taylor models. The last column shows the respective
ber of variables in the model (dof: degree of freedom).

CT—mOdele Abbr. 51 52 53 54 Ndof
Collisionless lowg L x 0 0 0 1
Collisional low3 CL X 'y 0 0
Collisionless highs H x 0 z 0 2
Collisional high# CH X Yy z 0 3
Non-neutral collisionless low#- NL x 0 0 w 2
Non-neutral collisional low3 NCL x vy 0 w 3
Non-neutral collisionless high- NH x 0 z w 3
Non-neutral collisional highg NCH x vy z w 4
Ideal fluid FI x 0 1-x/2 0 1
Resistive fluid FR X y 1x22+y 0 2

ing the Fokker-Planck equation into account without a tegftecting collisions among
the plasma particles and without obedience to Maxwell egastthe simplest Connor-
Taylor (CT) model, i.e. collisionless low; evolves. By gradually switching on a col-
lision term, Ampere’s law (for hight) and/or Poisson’s equation (for non-neutrality) a
variety of eight models is obtained. Additionally, we examiwo fluid models described
by continuity, momentum and energy equation with a choidgmdring dissipative ef-
fects which leads to either ideal or resistive fluid modele Tespective constraints on
the scaling exponents yield the following scaling law ansdtere the assignment to the
specific model is shown in table 1.
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cis the proportionality constant arfd&) comprises the terms with the scaling exponents
€ = (&1,--,¢n,,,)- Note that the numbeN,,, of the latter varies between one and four,
e.g. in the simplest case of the collisionless I6wnodel there is only one scaling
exponent; = .

One of the achievements of the 1998 approach was to overcahertcoming of
common scaling laws, i.e. the failure to mimic the saturatb confinement witm or
P. This follows from exploiting the invariance principle osip further and to scale not
over a single term but over a sum of scaling terf(g, ) with expansion coefficients,.

E
Wt =3 e f (&) - (4)
k=1

Since a sum is a linear operation the transformation prigseof Eq. (3) are conserved.
Which expansion ordeFE is necessary to describe the data best is in the realm of
Occam’s razor self-consistently contained in Bayesianehodmparison.



MODEL COMPARISON

A thorough discussion of the uncertainties of the measuteohtities is of major im-
portance for the identification of the most appropriate nhotleis was already part of
the work in 1998 and pursued on last years conference [3].&ar& confident that the
gualitative description has come to an end, we would ski# lio introduce an overall
correction factot in order to allow for deviations on the quantitative levedr la set of
N data this leads to the following likelihood function
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The uncertaintyr of the energy conterd “*? contains the direct distributions from the
diamagnetic measurement as well as indirect contributimms the finite precision in
the input variablesr{, B, P, a).

We are looking for the probability of a mod#{; given the datd¥ “*?. The odds ratio

reads
p(M; W, 0,1) _ p(Mjlo, 1) p(W*™|M;,0,1) ©)
p(M WP 0. 1) p(Mylo,I) p(W|My,0,1) "
While normally the prior odds (first ratio on the r.h.s.) i$ senstant for being ignorant
to the preference of a model prior to data, doing so we wileftus time a situation
where we have reason to change this procedure (s. resuitsgeEor the second ratio,
the so-called Bayes factor, we have to calculate the gldkeiiood. This is given by a
discrete sum over all expansion orders of Eq. (4)
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wherep(E|M;,o,1) is set constant because a priori no expansion order is favore
p(W“P|E M;,o,1) is obtained by marginalizing ovef w and the scaling exponents
summarized by a vect@with £ x Ny,; elements
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featuring the Riemannian metridw, &, c) = |/det [g] and|g| as the determinant of the

Fisher information matrix [4]. The invariant measure foparsion ordez and model
with Ny, variables is
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C is anE x E matrix with the expansion coefficients of Eq. (4) on its diagonalA
andU stem from the singular value decomposition of tiex £ matrix F (with the
E vectorsf () as columns). The matrik” is an N x N diagonal matrix consisting

of the logarithms of the-th CT-term in parentheses in (A = diag (ln Sﬁ“). The

column (row) element of the complet® - Ny, r) X (E- Ng4op ) matrix in the curly brackets
in (10) is obtained by running over all possiblg’) for eachk (k') of the expansion in
(4).

In the determination of the prior function we choose £oa flat prior and Jeffreys’
prior for w with lower and upper boundaries motivated by informatiamfrphysics.
For the coefficientg let us have a look at thg?-term in the likelihood function (5). Its
minimum value is

Xoin = Weap' ireer _ e 'F Feyr . (11)

The tilde denotes that theth vector entry is divided by its respective uncertaimtyand
cr 1S the usual maximum likelihood solution. Since Eq. (11)ra@rdrop below zero
we have
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While (12) is valid fore = cpsr, Only, we can extend its form to an estimation for
arbitrary coefficientsc. For those the right hand side of (12) has to allow for the
uncertainties in the data. In order to establish a new uppet Wwe addX”X to the
left hand side of (12)
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A conservative approximation & is to assume that the deviation of the expansion from
the measured data shall not be larger than the data valifevthiEeh meanss = Wezp
and results in o e
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We name this Bessel prior because (12) is nothing but theeBeeuality if F would
be a complete orthonormal basis. This just imposes an ugperdary on the choice of
possible coefficients. We write the Bessel prior @&sfanction which allows only those
values fore which fulfill (14)
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After stating the complete prior function, the next taskhis evaluation of its normal-
ization constang given by

N
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where the integration ovérhas to be postponed to the final integration of the posterior
function. For the contribution from theintegration we employ the conservative approx-
imation that our estimation of the experimental error igecrin quantitative respect at
least by a factor of two. Since the error enters the problem guadratic manner this
means that the overall correction factor is something betweg = 1/2? andw, = 22.
Inserting these values in the integration limits of (16utesin
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The integral inc covers—oo to oo and the upper limit established by the Bessel prior

becomes effective. The terdf B’ Fc in thed function constitutes an ellipsoidal sphere
in phase space. In order to calculate the volume of this hgpkere we perform a

transformation for the principle axes and reqqnﬁ‘gﬂ ~ |A\2. With this approximation
we get from the integration over
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Knowing the normalization of the prior function we margiaaloverc andw in (8) and
obtain eventually
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with 2(&) = 2(¢)/ [ d¢’ Z(¢’). CML s still the E x E diagonal matrix from (9) but now
with the maximum likelihood values,,, as elements.

The final integration ovef is performed with Markov chain Monte Carlo techniques
employing the thermodynamic integration scheme [5].
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FIGURE 1. W7-AS confinement data as a function ®fand collisionalityr*: low-3 subset (circle),
high-5 subset (squares), additional data in ISCDB (plus signs).

QUALIFYING DATA SUBSETS

Fig. 1 depicts the distribution of a total of 972 entries of VS to the International
Stellarator Confinement Data Base (ISCDB) [6] as a functibp¥ and collisionality
v*. From these data covering different physical regimes gabsgh model specific
properties have to be selected.

The data set of the previous work (full circles in Fig. 1) wasllMocated in the low-
3 regime (351%) to serve as a test example for a choice of low- and highedels.
Moreover, for most of these data it was expected that colisamong particles play a
role. Additional care has to be taken as the plasma erérgiows a variation of a factor
up to two as a function of the rotational transfortii]. This necessitates identifying
regions in with small changes in the absolute valuel®f(a variation of 10% of the
total value was considered as tolerable). For the toease, W7-AS shots withbetween
0.33 and 0.35 were chosen resulting\in= 153 data.

In order to test the procedure in the highange as well, the shot files of W7-AS were
subjected to a higl¥survey. The search criteria were to consider certain magfeid
and plasma current conditions of shot files in hijghampaigns. Although the influence
of ¢+ is expected to be less for the highease, a range for between 0.45 and 0.49

1 The collisionalityr* is a dimensionless number to quantify the number of cotiisiamong plasma
particles. Its relative size characterizes different megg where collisions become important for the
confinement properties. In the present example of the W7tdlBsator this is the case for low{ < 20)

and high ¢* 2 200) values, but lesser for intermediately valued
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FIGURE 2. Bar chart of the model probabilities for the (a) lgnand (b) highg data set. The unphys-
ical non-neutral models are shown in gray.

was taken containing N=96 high-data (open squares in Fig. 1) with still a moderate
variation of W according to [7].

RESULTS

The results of the model comparisons are shown in Fig. 2. kerldw; data the
outcome of the first four models is a restatement of the work398 with the colli-
sional lows3 model as the most probable one. However, with the introdoatif non-
neutrality, i.e. taking into account the transformatiowainances of Poisson’s equation
with a charge density not equal to zero, surprisingly the-neutral collisionless low-
£ model wins. While for length scales below the so-called Eelgngth the explicit
charge distribution of ions and electrons has to be takenantount, above that limit
a plasma appears from the outside as being charge neutrahesmachine settings the
experiments were performed at it is not expected that phenamaccur which harm the
charge neutrality to an extent large enough to show up inajlobnfinement proper-
ties. The explanation to this astonishing result can beddunhaving a closer look at
the CT-terms assigned to the specific models. Both modelstgeanly by exchanging
the collisionality-termu® B* /n with the non-neutrality-tern3? /n. However, the low3
data hardly vary in® B* and 32 making differences between both models blind to model
comparison. The magnetic field has only two settings at 2r&il1a25T with minor vari-
ations around these values, while the minor radius has niast entries around 12cm
and 17.5cm with a few measurements in between. The samerisfgpéhe highs case.
Here the (unphysical) non-neutral collisionless higghrodel challenges the collisional
high-5 one. With magnetic fields close to 1.2T and a strong accumoulaf the minor
radius around 11.7cm again the data base does not offer #gsgbpidy to distinguish
between both models. These findings are supported by tre lboerelation coefficients
being significant for the responsible two terms (see tahle 2)



TABLE 2. Linear correlation coefficient of the CT-
terms in Eq. (3) for low- and higl#-data.

3 p4 3 R4 2 2
o (58 2) (%) ()
n na n n na n

low-43 -0.11 0.84 0.38
high-3 -0.57 0.88 0.15
CONCLUSION

Taking advantage of the invariance principle in order toggate testable models, one has
to be cautious that the data base possesses enough virialtiie model determining
guantities. However, in Bayesian data analysis we havetiiéd correct an implausible
outcome, i.e. the prior odds ratio. Since the assumption pliaama without charge
neutrality is unphysical the prior odds ratio can be adpistecordingly. But what is
unphysical in numbers? Giving a chance of 1 in 5 does alreatfics to obtain the
correct result in the above case. Probabilities }Jiké/, junphysical) = 10~ or lower
may be more justified from an expert view.

Apart from this caveat Bayesian model comparison does adgtect the correct
model (collisional highg) for a newly acquired higl# data set in the collisional regime.
Since the models simply emerge out of an invariance priacggarding the linear trans-
formation behavior of basic physics equation, the procedaems to be a promising tool
whenever the complexity of a problem denies a detailed gegnT.
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