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Abstract. A method, which we suggest to call the Empirical Maximum Entropy method, is implic-
itly present at Maximum Entropy Empirical Likelihood method, as its special, non-parametric case.
From this vantage point the entropy-based empirical approach to estimation is surveyed.
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INTRODUCTION

Relative Entropy Maximization method (REM/MaxEnt) can be used at few contexts,
for different purposes (cf. [7], [21]) and its use there can be justified by various ar-
guments. In this note we consider REM within the framework of Boltzmann Jaynes
Inverse Problem (theα-problem, for short). The problem is framed by information-
quadruple{X , r,n,Π} whereX is support of random variableX with probability mass
function (pmf)r, andΠ is a set of pmf’s into which empirical measure (hereafter called
also type, orn-type) – induced by an unavailable random sample fromr of sizen –
is known to belong. The objective is to select a type (one or more) fromΠ when the
information-quadruple and nothing else is available. IfΠ contains more than one type,
the α-problem becomes under-determined and in this sense ill-posed. Application of
REM to theα-problem can be justified on probabilistic grounds, via Conditional Limit
Theorem (CoLT) [23], [22], [7], Gibbs Conditioning Principle [6], [8] and/or as asymp-
totic instance of simpler and more obvious Maximum Probability method [9].

The α-problem is an idealization, since at least the ’true’ data-sampling pmfr is
usually not known, and thus it is in practice replaced by some ’reasonable’ guessq.
Choice ofq usually arises froma priori considerations. As far as the feasible set is
concerned, the most commonly consideredΠ is the one defined by moment consistency
constraints (abbreviated mcc)Π , {p :

∑
piuj(xi) = aj, j = 1,2, . . . ,J}, whereu’s are

real-valued functions and the vectora ∈ RJ contains the sample-based values of theJ-
tuple of the left-hand-sideu-moments. Researcher should specify the functionsu, called
potentials, which are thought to be a characteristic of the studied phenomenon.

EMPIRICAL MAXIMUM ENTROPY METHODS

In this work we extend the common approaches to both construction ofΠ and selection
of q. In particular, we assume that there is available a random sample of sizeN from the
’true’ data-sampling distributionr, and the guess/estimateq of r can thus be based on it.



This way the originalα-problem turns intoempiricalα-problem. In the case of discrete
random variable the estimateq can be constructed directly. The challenge of continuous
case can be handled in two ways (see the next section).

The standard mcc construction of the feasible setΠ can become more versatile, if
instead of the potential functionu(x) its parametric extensionu(x,θ) is considered. This
way theα-problem with mcc turns into parametric mccα-problem.

We gradually blend together these two extensions in order to get the empirical para-
metric mccα-problem, and note that it has to be solved by Empirical Maximum Max-
imum Entropy method (EMME), known from the econometric literature. The simpler
problems which it encapsulates are at best implicit in the literature.

Empirical MaxEnt

The simplest of the problems, the parametricα-problem can be illustrated by the
following example.

Example. Let X = {1, 2, 3, 4}, Π = {p :
∑

pixi = a} and letn = 109 so that the
feasible set of types can be effectively considered to be set of pmf’s. The value of the
u-moment based on random sample of sizen which is not available to us was found
to bea = 3.1. The data-sampling pmfr is not known to us, either. However, instead of
r, let there be a random sample of sizeN = 40 from r, which induced empirical pmf
νN = [5, 14, 12, 9]/40. The objective is to select ann-type (effectively a pmf) fromΠ,
given the available information. We thus face the empiricalα-problem with feasible set
defined by the moment-consistency constraint.

It is reasonable to estimate the data-sampling pmfr by the empirical pmfνN . Con-
ditional Limit Theorem then implies that the empiricalα-problem should be solved
by selecting the information projection̂p = arg infp∈Π I(p||q), of νN on Π. There,
I(p||q) =

∑m
i=1 pi log pi

qi
is the information divergence, or minus relative entropy ofp

with respect toq. We call the associated method Empirical Maximum Entropy (EME).
As N →∞, the information projection converges (a.s.) to information projection ofr
onΠ.

Continuous case

Assume now that the underlying random variableX is continuous, with probability
density functionr(X), unknown to us. The continuous-case analogue of the Example
has the following form:n = 109, Π = {p :

∑n
l=1 plxl = a} wherea = 3.1. Again, let

there be a random sample of sizeN drawn fromr(X), which could provide an estimate
of r(X). The question is, how? One possibility is to use kernel estimator. This would
however introduce a new source of ’uncertainty’ into the problem.

Let us recall that in the continuous case CoLT dictates to solve the empiricalα-
problem by selecting the information projection̂p = arg infp∈Π I(p||q), where now
I(p||q) ,

∫
p log(p/q), andq is the data-based pdf-estimate ofr. There are two ways



considered in the literature how to obtain the information projection using directly the
sample data, and thus avoiding use of an intermediate construct like the kernel smoother.

Let us begin with the more difficult yet more common one, which we call empirical
estimation ’trick’. The trick [19] lays in forcing the observed random sample (of size
N ) to become the supportS of a random variableS with the uniform distributionu.
This is done by assuming that no two observed data-points are identical. (Alternatively,
the trick could be explicated as forming a Dirac-type estimator of the continuous data-
sampling distributionr.) The feasible setΠ of pdf’s thus turns into the setΠS , {pS(·) :∑N

l=1 pS(sl)uj(sl) = aj,1≤ j ≤ J} of pmf’s on the supportS. This way the continuous
setting turned into the discrete-case empiricalα-problem, and the discrete-case form of
CoLT can be used to justify EME as the correct method of its solution. The method
selectŝp = arg infp∈ΠS

I(p||u). Note that the method if used in the discrete case would
collapse into the discrete-case EME.

The other approach was used at [15]. It is based on the observation that the convex
dual problem tôp = arg infp∈Π I(p||r) leads top̂(x; λ̂)∝ q(x)exp(−

∑
λ̂juj(x)) where

λ̂ = arg sup
λ∈RJ

{∑
λjaj− log

∫
r(x)exp

(
−

J∑
j=1

λjuj(x)

)}
. (1)

Since instead of the ’true’ data-sampling distributionr(X) we have only theN -sample,
it is natural to replace (1) by its empirical analogue

λ̂ = arg sup
λ∈RJ

{∑
λjaj− log

N∑
l=1

exp

(
−

J∑
j=1

λjuj(xl)

)}
. (2)

The two approaches lead to the same result.

MaxMaxEnt

Scope of the standard moment-consistencyα-problem can be expanded by replac-
ing the constraints by parametric moment consistency constraintsΠ(θ) , {p(·, θ) :∑

p(xi, θ)uj(xi, θ) = 0, j = 1,2, . . . ,J} whereθ ∈ Θ ⊆ Rk. In this context it is worth
envisioning the data-sampling distributionr(X) as a member of parametric family of
distributionsf(x,θ). The functionsu are in this context commonly known as esti-
mating functions and the moment-consistency constraints are called unbiased estimat-
ing equations (ofθ), for obvious reasons. The parametricα-problem is framed by the
information-pentad{X , r,n,Π(θ),Θ}, and the objective is now to select parametric type
from Π(θ) when nothing else except of the pentad is available. It is thus necessary to se-
lect bothp andθ. If selectingθ is of greater concern, the problem can be viewed as a
problem of estimation of the ’true’ value of the parameterθ of the data-sampling distri-
butionf(x,θ).

An example could help to fix ideas.

Example. Let X = [1 2 3 4]. Assume that it is known thatr(x) belongs to a para-
metric familyf(x,θ), such thatu(x) = x is unbiased estimating function of the scalar



parameter. Sincer(x) is not known to us, we make a guessq = [0.1 0.6 0.2 0.1] of it,
based on a prior information. Data come in the form of information that a sample of
sizen = 109 (so that effectively we can replace types by pmf’s) led to the sample value
of theu-moment in the range[2.3,3.7]. Thus,Π(θ) , {p(θ) :

∑4
i=1 pi(θ)(xi− θ) = 0},

whereθ ∈Θ = [2.3,3.7]. Given the information-pentad{X , r,n,Π(θ),Θ}, the objective
is to select a pmf fromΠ(θ).

CoLT implies that the parametric mccα-problem should be solved by selecting
p̂(θ) = arg infp∈Π(θ) I(p(θ)||q), with θ = θ̂, whereθ̂ = arg infθ∈Θ I(p̂(θ)||q). Since the
solution can be equivalently obtained as a double maximization of the relative entropy
(over p and θ) it is reasonable to call the associated method Maximum Maximum
Entropy (MaxMaxEnt).

The continuous-case version of the problem can be handled in either of the two ways,
described in the previous section.

Empirical MaxMaxEnt

The parametric mccα-problem can be extended into the more realistic empirical
version, if it is assumed that in addition of the ’aggregated data’ there is also a random
sample of sizeN from the data-sampling distribution. The problem is made more
flexible, by replacing the assumption thatΘ is given as an aggregate based on sample of
sizen, by assumption thatΘ is simply specified some way.

The empirical parametric mccα-problem contains all the ingredients which are con-
sidered accessible in the current econometric research:X , the sample (of sizeN ), set of
estimating equations andΘ.

If the above information and nothing else is supplied, CoLT dictates to solve the prob-
lem of selectingp(θ) by choosingp̂(θ) = arg infp∈Π(θ) I(p(θ)||νN), with θ = θ̂, where
θ̂ = arg infθ∈Θ I(p̂(θ)||νN) andνN is the empirical measure induced by the sample. The
associated method is known either as Maximum Entropy Empirical Likelihood [17] or
Exponentially Tilted estimator [1], [2], [13], [15]; we call it Empirical Maximum Max-
imum Entropy (EMME) method. Its continuous-case variant can be constructed either
via the empirical estimation trick or by the approach of [15]. In regards of the approach
based on the empirical estimation ’trick’ is is worth noting that the convex dual problem
to p̂ = arg infθ∈Θ infp∈Π(θ) I(p||u) can be written as:

θ̂ = arg inf
θ∈Θ

sup
λ

1

n

n∑
l=1

log p̂S(sl;λ,θ),

where
p̂S(·) = k(λ,θ)exp(−

∑
λjuj(sl, θ)),

and k(λ,θ) is the normalizing constant. The dual formulation shows that EMME is
equivalent to a MiniMax Likelihood method1, which utilizes likelihood function based

1 Confront it with the MiniMax Entropy method [10].



on the exponential family and the data-induced uniform typeu.
Finally, CoLT implies that the available information cannot be processed by a method

other than EMME. Thus, Empirical Likelihood or Generalized Method of Moments
in this case violate the probabilistic theorem; for further discussion see [11]. Let us
mention, that at [11] also theβ-problem – an ill-posed inverse problem, which is in a
sense opposite to theα-problem – is considered and a probabilistic argument is recalled
which implies that the problem should be solved by non-parametric Bayes method, see
also [12]. The method, forN →∞, reduces to Maximum Non-parametric Likelihood
(or Empirical Likelihood, in the continuous case).

SUMMARY

Empirical Estimation approach [18], [19], [20] can be combined with relative entropy as
the regularizing criterion [1], [13], [15], [4], [16], see also [19] and [17]. The approach
is used to process information of certain form in order to obtain estimator of unknown
values of parameters of interest, so that consequently inferences can be made, cf. [19],
[17]. The information comprises supportX , random sample of sizeN , set of estimating
equations and parametric spaceΘ. As it was recognized at [16], Conditional Limit
Theorem and Gibbs Conditioning Principle apply to the setting, and show that the
information should be processed by means of the relative entropy maximization. The
resulting method is known under various names; here Empirical Maximum Maximum
Entropy (EMME) method. The setting and hence also associated EMME contain simpler
settings and methods, which could be of some independent interest. They were discussed
in this note.
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