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Abstract. The present contribution discusses a Riemannian-grabiesdd algorithm and a

projection-based learning algorithm over a curved paransgiace for single-neuron learning. We
consider the ‘blind deconvolution’ signal processing peal. The learning rule naturally arises
from a criterion-function minimization over the unitary gsr-sphere setting. We consider the
blind deconvolution performances of the two algorithms a as their computational burden and
numerical features.
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INTRODUCTION

Over the recent years, we have witnessed an increasingshteto application of
geometrical methods to machine learning [1]. The key ide¢hasa network parameter
space, either flat or curved, may be endowed with a specifimg#&a structure (in the
sense of differential geometry), which is worth taking imimcount in the design of a
network learning algorithm. A widely known example is thatural gradienttheory.
A family of multilayer perceptrons may be associated a patamspace that forms a
geometrical neural manifold. Such a manifold does not mssaduclidean geometrical
structure, but a Riemannian structure. It is a common egpee that the standard
gradient learning algorithms, such as back-propagatiay be trapped or seriously
slowed down by large plateaus located on the surface of theonle error criterion
during the learning processes. Recent studies have shae#nning algorithms based
on natural gradient, which takes into account the geonatstructure of the neural
manifold, do seem to be less affected by this difficulty [17].

The adoption of sophisticated mathematical instrumentsrently brings incremen-
tal conceptual complexity into the classical learning tieoand may bring additional
computational/numerical burden into the related learmilggrithms. With reference to
the relationship between learning theories and learniggrahms, it is worth noting
that the learning rules may arise from the optimization afaihing criterion via a suit-
able method, such as the gradient-based one, and are eegeeskarning differential
equations on the network parameter space. Such diffefreqti@tions must then be dis-
cretized in the time domain in order to make them suitableifgslementation on a
computer. In the case of flat (Euclidean) parameter spauwesliscretization in the time



domain may be effected through classical numerical casctdahniques, such as the
forward or backward Euler method or more sophisticated odhhat aim at increas-
ing the precision of the approximation. When dealing witlved parameter spaces,
however, such methods are no longer suitable and disdietizchniques developed
in the mathematical field of geometrical numerical inteigrashould be invoked, in-
stead, [5, 11, 12]. In the present contribution, we consadgignal processing problem,
namelyblind deconvolutionwhich may be tackled via a single learning neuron model,
whose learning strategy naturally arises as criterioretion minimization over a curved
parameter space. Blind deconvolution [8, 15] is a sta@ik8ignal processing technique
that aims at recovering a source signal distorted by theunethat it propagates within.
Well-known engineering applications of blind deconvabatare equalization of commu-
nication channels [3], optomagnetic memory-support gi@end retrieval enhancement
[6], image deblurring [16] as well as geophysical measurémanalysis [21]. An effec-
tive blind-deconvolution technique is known as ‘Bussgamgiich relies on the iterative
Bayesian estimation of the source sequence, where the iBayesgtimator is matched to
source statistics and to the model of the filter output sifflaSome modified Bussgang
algorithms, based on neural-type approximate Bayesiamaisirs, have recently been
proposed by the present author in [10].

The aim of the present contribution is to discuss a Riemangiadient-based algo-
rithm and a projection-based algorithm for Bussgang-typellmieconvolution. The first
algorithm is based on the key concept of discretizing a giffgal equation on manifold
via suitably connected piece-wise geodesic arcs [9]. Therskalgorithm is based on
the more familiar concept of embedding the parameter spag@ilarger Euclidean am-
bient space, which allows effecting learning steps as iptrameter space was flat, and
to back-projecting the current network state into the cdiparameter space through a
suitable projection operator. We consider the blind deohution performances of the
two algorithms as well as their computational requirementsrder to gain incremen-
tal knowledge on the benefits and drawbacks pertaining tb br@thods on a signal-
processing application.

‘BUSSGANG’-TYPE LEARNING

The sampled or discrete-time system to deconvolve is destiy the following in-
put/output model:

Ty = hTSn+Vn ) (1)
where s,, is the system’s input vector-stream at timeec 1.N C Z, namely
snd:ef[sn Sn—1 Sn—2 --- Sn-r,+1]7, s, denotes the sampled source signal and

represents a zero-mean white measurement disturbancpeimdient of the source
signal. The constanL;, denotes the length of the system impulse respdns&he
following minimal hypotheses about the system and datastrenay be considered
[4, 15]: The system’s impulse response satisfiédh = 1 and its inverse has finite
energy; the system is time-invariant or slowly time-vagyithe source signal, is a
stationary, ergodic, independent identically distrilouieD) random process with mean



IE,[s,] = 0 and variancéE,[s] = 1; also, the probability density function of the source
signal is supposed to be symmetric around zero and non-@auss

A filter described by the vector impulse response- [wg wo w3 ... wy, 1] repre-
sents the approximate inverse of system (1) if filteapproximately cancels the effects
of channeh on the source signal. Denoting with the vector containing the filter input

samples at time: € 1..N C Z, namelyx, <[z, 2,1 Zn_2 ... Tn_1,11]7, Where the
constantL,, denotes the length of the inverse filter impulse respansthe output of
the filter writes:z,,, , = wl x,,, m € 1..M C Z. In this paper, we distinguish between the
time-indexn, which denotes sample time-ordering, and the learningditen indexm,
which denotes learning-iteration time-ordering. In ameliearning, it may hold: = n,
while in batch-type learning, as it is the case in the presentribution, the two indices
are independent.

In general, the deconvolution may only be approximate bexadithe possible pres-
ence of additive noise affecting the system’s output measund because a finite-
impulse-response (FIR) filter cannot represent the invefdbe FIR system (1) (for
more details, the Reader is addressed to [8, 10, 15]). $iraced s,, are both unknown,
the optimal filterw, such that, ,, ~ s,, has to beblindly identified, possibly by means
of a neural algorithm. From the basic theory of blind decdution, it is known that the
source signal may be recovered up to arbitrary amplitudingcand time-delay [15].
In the present setting, however, we suppose, without logeoérality, that the source
stream power and the system energy are known, thus the ad®lif the recovered
source is controlled by the norm of the weight-vectar Also, during filter learning,
the misadjustment of filter's coefficients makes the filtetpot differ from the source
signal.

An appropriate Bayesian estimator of the source sequertbe &rmB(z,, ,,) can be
designed according to Bayesian estimation theory. On this bathe available memory-

less Bayesian estimator, in [2] the error criter@(wm)‘if%IEzm [(zmm — B(me))a]
had been proposed by Bellini. For uniformly distributedreeustream, which is of inter-
est, e.g., in telecommunication systems, a suitable appadion of the actual Bayesian
estimatorB(z) is the neural transfer function [15]:

B(z) = ktanh(\z) (2)

with x and\ being properly tuned parameters. In order to select seitediues for these
parameters, in [10] we proposed to adapt them through timendgns of a gradient-
based algorithm applied @(x, A\, w). In the recent contribution [13], a batch procedure
was proposed in order to optimize the values of the parasietand A in the neural
activation function (2) prior to filter learning. The sameogedure is adopted in the
present work as a pre-learning stage. (An extensive aisalythe selection criterion for
these parameters is available in [14].) Also, the autonggtic control (AGC) constraint,
which is typical in telecommunications, may be invoked. TA®C constraint aims
at keeping constant the energy of the filter impulse respeesgience, that means
enforcing the constraint:

wg+ws+wi 4+ +w;  =1. (3)
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FIGURE 1. A neuron with filtering synapses. (Unitary delayers endoswtbural system with temporal
memory, namely with samples,_;, while w; ,, denotes the value of thié" filter tap-weight at itera-
tion m.) The quantityc,, € R denotes instantaneous amplitude warping and quadjiit¢ Z denotes
instantaneous group delay intrinsic to deconvolution pssc

It deserves recalling here that the employed neural streiciclosely related a neural
multi-layer perceptron (MLP) structures endowed with fitg synapses (a review of
which was given, e.g., in [20]), even if its learning paradicg, by the ‘blind’ nature of
the problem, inherently unsupervised. A sketch of the eggda@econvolving neuron is
shown in the Figure 1.

DISCUSSED ALGORITHMS

The aims of this section are to recall the geodesic-baseshgetution algorithm, which
relies on the geometry of the parameter space induced by @@ @onstraint (3), and
the projection-based algorithm. Also, details on the $itslaf the algorithms are given.

Learning algorithm based on geodesic-arcs

The first step in the development of a gradient-based algord@onsists in the recog-
nition of the geometry of the parameter space induced by tB€ Aonstraint. The pa-
rameter space is the hyper-sphéte ! {v € Rr|v7v = 1}. At every pointv € SP!,
the linear space tangent to the sphere has structure:

TvSpfl(g{u € Rlulv=0}. 4)

In fact, by definition, the tangent spacevais spanned by vectors tangent to the curves
belonging to the base manifold and passing by the peintet us consider, thus, a
generic smooth curve(t) parameterized by < R, which passes by the indicated point



at ¢t = 0. The tangent vector to the curve is the velocity vecigt) at time¢ = 0.
The velocity vector should satisf (v?(¢)v(t)) = 0, that is,2v” (¢)v(¢) = 0. At time
t = 0, the latter condition gives the tangency condition in (4)sd) the normal space
at every point of the base-manifold, which is the orthogamshplement of the tangent
space with respect to a suitable Euclidean ambient spatththenanifold is embedded

within, may be defined as well. Here we make use of the deﬁniNoSp—l‘éef{r €
RP|(r,u)® =0, Vu e T,,5P7'} = {\v|\ € R}, where the ambient space was assumed

to beR?, endowed with its canonical scalar produet;, r2>73pdéfr1Tr2 forallri,ry € R?.
The smooth manifold?—* is turned into a Riemannian manifold by endowing it with a
local scalar product, ), : T,SP~1 x T, SP~! — R.

As an optimization method that allows to look for the minim(onlocal minima) of
the functionf(v) overS?~!, the standard Riemannian-gradient-based rule:

dV Sp—l

b 5
=W (5)
may be employed. From differential geometry, it is knowrt tgaven a regular function
f:57~! — R, its Riemannian gradient is the vectG¢” ' f that satisfies the following
conditions:

T
VS e T, b and(VST fu), = (g—v) u,VueT,SP .

In order to compute the Riemannian gradient, it is necessasglect a metric. The
unit-hyper-spheré&?~! is a special case of a more general geometrical structungrkno
as Stiefel manifold, for which two metrics are commonly eoygld: The Euclidean and
the canonical metrics (see e.g. [9, 11]). In the casé”of, these metrics coincide and

are given by the uniform metriqu,, UQ>V(i:eflI{UQ. By applying the above conditions, we
getVs" ' f = (I, — vv!) 2L, wherel, denotes the x p identity matrix. For the blind-
deconvolution problem at hand, the differential equatidnhrbiay thus be customized

s d oC (w)
Y% W
oW i A 6
dt ow (6)
In the blind deconvolution context, the dimension of thegpagter space coincides to the
length of the inverse filter impulse response, namely L,,. For the partial derivative
of the cost function, it holds:
oC(w o
PN) By 22 E(BE) 2B ()~ 1) @
In practice, a suitable numerical integration method sthdod selected in order to
solve the differential equation (5). We propose here to esnghe integration method
based on geodesic arcs.
On a Riemannian manifold embedded in a Euclidean spacegageanay be defined
as a curve on which a particle, departing from the peinwith velocity g, slides with
constant scalar spedéd||. We denote such curve a$t) =1'(¢,vo,g), where the variable

—(L, —ww?)



t > 0 provides a parameterization. In the present context S?~! andg € T,,57.
The equation of the geodesic may be found by observing tleaaiticeleration of the
particle is either null or normal to the tangent space at arigtpnamelyv ¢ N, S~ L.

In explicit form, the equation of the geodesic on the unitdrypphere may be found by
solving the following system:

V—Av=0,v(0)=voeS" ! v(0)=geT,,S"". (8)

The solution of the above differential system is [7]:

. g
v(t) =T(tvo,8) = cos(HgHt)Vo+sm(HgHt)@ : 9)
where || - || denotes the standartb, vector norm. It is straightforward to verify that

vI(t)v(t) = 1,vT(t)v(t) = 0 and that||v(t)|| = ||g]|, for all ¢ > 0. The relationship
(9) for the geodesic represents a ‘great circle’ on the hgpeere, which is a closed
curve, therefore, it makes sense to restrict the valuetofan interval such that, e.g.,
0<|gllt <m.

A way to approximate the exact flow of the differential eqoaton a manifold (6) via
geodesic arcs is to make use of the following iteration rule:

W, =1 ((5,wm,1, —V;gv:_llC(w)) ,mel.M, (20)
whered denotes an appropriate constant adaptation stepsize@ads?—!. It is known
[7], that the geodesic step (10) provides a first-order appration to the true flow of
the differential equation (6) with initial conditiow,,,, namelyw,, — w(4§) = o(5?).

Learning algorithm based on projection

A second way individuated in this paper to perform adaptatia the unit hyper-
sphere is updated-vector projection. Technically, it istfimecessary to perform the
embeddingS?—! — RP of the hyper-sphere into the Euclidean manif®éd, so that
we get a larger ambient space to move in. Now, every updatépgreay be performed
safely fromSP~! to R?, by following, e.g., Euclidean gradient direction, andrthie
updated vector may be projected back to the maniffid’ by the help of a suitable
projectorIl : R? — SP~1: The update vector before projection does not belong to the
unit hyper-sphere and it is therefore necessary to praj@écta the sphere through the
operatorP(-). The algorithm may be formally described as:

szp(wm_l_gm
ow

) P (11)

A%

The quantityé in the projection-based algorithm (11) denotes again anogpiate
constant adaptation stepsize.



On the stability of learning algorithms

With reference to the geodesic-based algorithm, it is easgctognize that, if the
time to within the geodesic is extended is short enough, theralgorithm essentially
follows the Riemannian-gradient flow. In fact, forsmall enough, the expression (9)
may be approximated as:

2t2
[(t,vo,8) ~ <1 - Hg! >V0+gt :

If this approximation is plugged in the expression (10),rémsult is:

B VS”_I C 25 p—1
w ~ — H Wm712 (W)H Wm—1 _vgvm_lc(w) ’

The above expression shows how the approximate derivativg™= has a normal
component (the leftmost one on the right-hand side) and get&ncomponent (the
rightmost one on the right-hand side). The normal compomeayt be made arbitrarily
small by properly selecting the learning stepsizén any case, it is interesting to note
that the normal component points towards the interior ohwyeer-sphere, so it likely is
not a source of instability.

About the projection-based algorithm, it falls within thiass of fixed-point algo-
rithms [13, 19]. The standard mathematical tool for provihg convergence of such
kind of algorithms is the Banach theorem, which insists andbntractivity of the op-
erator that describes how a vector-state_; is transported intav,,. However, in the
author’s experience (and as confirmed by the numerical arpats presented in the
next section), often proving/checking that such operaoot contractive is a hard task
and yet the algorithm is convergent. A different approagiuisued, e.g., in [18], where
a stepsize sequence is computed in such a way to ensure gbxedalgorithm does
converge, on the basis of the local curvature of the critefimction to be optimized.

RESULTS OF NUMERICAL EXPERIMENTS

In the following experiments, it is assumed thatis a white random signal uniformly
distributed within[—+/3, ++/3], whose length is oV = 5,000 samples.
The system deconvolution accuracy may be measured by métresresidual inter-

symbol interference (1SI), defined as [19] 4St T2To—Time  whereT,, h @ w,,

denotes the convolution between the system’s impulse nsspand the inverse filter's
impulse response, arid, ..x denotes the component @f,, having the maximal abso-
lute value.

Whenever appropriate, thanks to the hypothesized erdgdibe ensemble average
IE[-] may be numerically estimated H.,, . [®(zn..)] & + S0, ®(2m.»), Which is a
function ofm, for a generic vector-valued functian: R — R?.
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FIGURE 2. Trajectories of the randomly initialized geodesic-baskabdeconvolution algorithm on
the base manifol@? for the experiment with the non-distorting channel.

Numerical experiments with a toy channel

In order to illustrate the behavior of the geodesic-baserahm as well as
projection-based blind-deconvolution algorithm, it dess to consider first a low-
dimensional experiment with a toy (non-distorting) chdnkiée considered the chan-
nel's impulse response to be= [1] (namely,L; = 1) and the base manifold to k&
(namely,L,, = 3). In this case, the base-manifold as well as the learningdi@y w,,
may be rendered in graphical way. In this experiment, theallohannel-filter-cascade
impulse responsd’,, = h ® w,, = w,,, therefore, as the channel impulse response
is non-distorting, if we let the Bussgang neuron learnirajettory departs from a
randomly generated weight-vecter, € S?, it should eventually converge to one of the
six attractorg+1 0 0]7, [0 +1 0] or [0 0 +1]7.

The numerical results for the geodesic-based algorithtajiodéd onl 00 independent
trials with randomly generated initial weight-vectors dre tsphere, with\/ = 100
learning iterations per trial, with learning stepsize 0.5, are depicted in Figure 2: All
the whole trajectories are completely lying on the sphetecmverge to one of the six
attractors placed on it. No diverging (i.e., manifold-gsng) trajectories were observed.
The numerical results for the projection-based algoritbbtained onl00 independent
trials, with M = 100 learning iterations per trial, with learning stepsize- 0.9, are
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FIGURE 3. Trajectories of the randomly initialized projection-bddaind-deconvolution algorithm
on the base manifold? for the experiment with the non-distorting channel: Dotlieg corresponds to
normalized trajectory, while crossed-line correspondbéosteps before normalization.

depicted in the Figure 3: In this figure, both the filter im@uiesponse trajectories before
normalization and after normalization may be observedtrAjectories converge to one

of the six attractors.

Numerical experiments with a telephonic channel

The discussed algorithms were tested to learn an inversefiilt the sampled tele-
phonic channel described in [4] having duratibp = 14: Its features are illustrated
in Figure 4 (the channel impulse response has been norma@¢hath”h = 1). The
length of the neural filter impulse response was assumegd 14 as the result of vali-
dation [10, 13, 14]. In all the following experiments, thé&iel impulse response of the
filter, namelyw,, was assumed as a null sequence, except far'trtap-weight that was
set tol.

Results concern the analysis of the behavior of the geotbesied and projection-
based algorithms on a noiseless channel (i.e., model (h)wyit= 0 identically). The
Figure 5 illustrates the performance indices pertainindpath algorithms, in which
the constant learning stepsize= 1 was chosen for the geodesic-based algorithm and
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FIGURE 4. Sampled telephonic channel. Left: Zero-plot and impulspoese bar. Right: Ampli-
tude/phase of the frequency respoiBg’*) of the channel.

0 = 0.9 was chosen for the projection-based algorithm, as a reswialmation. The
Figure 5 also illustrates the learnt filter afteéf = 80 learning iterations as well as the
convolutionT after learning (this result is almost the same for both allgors). While
both algorithms perform in a satisfactory way, reachingydow ISI values, it is to be
noted that the geodesic-based one converges more stéadlilig case.

Computational complexity comparison

The discussed algorithms were compared in terms of compuo&tcomplexity,
where the flops-count and the elapsed-time for every runedegned as measures of
the computational burden of each algorithm provided theyilekcomparable decon-

volution performances. The experiments were performecdaqu\TLAB@) 5.3, which
provides flops count, on a 1.86GHz — 512MB machine. The resiithis comparative
analysis are summarized in the Table 1. Both algorithms weren the same batch of
5,000 channel output samples, on the same noiseless BGR chamhatiapted through
M = 50 iterations. The flops count refers to the number of floatingpaperations re-
quired by the implemented code to run, averaged over thertotaber of samples (in
this caseb, 000 x 50). In this comparison, the time count refers to the total treguired
by each algorithm to run on the specified platform. As alreaoted, the deconvolution
performances are comparable for the two algorithms, whieprojection-based one
proves to be slightly lighter from a computational point aw.
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TABLE 1. Results of computational-complexity
comparison of the geodesic-based algorithm and the
projection-based algorithm.

ALGORITHM |ISI(dB) Flops Time (sec.s)

Geodesic-based —25.057  80.594 0.328
Projection-based —25.056 81.582 0.313

CONCLUSIONS

This contribution aimed at discussing a numerical comparisf a Riemannian-

gradient-based and a projection-based learning algorkier a curved parameter
space for single-neuron learning with application to bliledtonvolution, which may be
tackled via a single learning neuron model whose learniragegy naturally arises as
criterion-function minimization over the unitary hypegkere.

The blind deconvolution performances of the two algoritlassvell as their compu-
tational burden and numerical features were considereccamgpared. The numerical
results evidenced that both algorithms are well-behavimg) that the geodesic-based
algorithm exhibits steadier convergence.
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