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Abstract. In this tutorial talk, we will first review the main establisth tools of probability and
information theories. Then, we will consider the followimgain questions which arise in any
inference method: i) Assigning a (prior) probability lawdauantity to represent our knowledge
aboutit, ii) Updating the probability laws when there is n@ece of information, and iii) Extracting
guantitative estimates from a (posterior) probabilty law.

For the first, the main tool is the Maximum Entropy PrincipléEP). For the second, we have
two tools: i) Minimising the relative entropy (the Kullbdleibler discrepency measure), and
i) The Bayes rule. We will make precise the appropriateaitins to use them as well as their
possible links. For the third problem, we will see that, eiféhcan be handeled through decision
theory, the choice of an utility function may depend on the fpvevious tools used to arrive at
that posterior probability. Finally, these points will béustrated through examples of inference
methods for some inverse problems such as image restotlind source separation.

Key Words: Information theory, Entropy, Relative Entropy, Assigniagd updating proba-
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NOTATIONS AND INTRODUCTION

In what follows, we will use the following notations:
A discrete valued quantity of interesk € {wy, - ,w,}

Probabilities: p={p- b}, P =PX =w))
Information quantities: I={L,---.1,}, I;= lnp— =—Inp;
Entropy [1] : H(p)=E{l;} =->_7_pjInp;
Prior probabilities: a={q," .}

Relative Entropy (Kullbak-Leibler): K(p:q)=3_7_,p;Inp;/q;

Data type 1K expected values:  d, =E{¢w(X)} =37 pjou(w;), k=1, | K
Data type 2:N direct samples: x={xy, 2y}

Data type 3N indirect samples:  y={y,---,yn} Withy = Ax

Data type 4:N indirect noisy samplegy = {y;,--- ,yn} Withy = Az + €

For a continuous valued quantity of intereste C, whereC is a compact, we note
by p(x ) its probability density function (pdf). Then the entropgté) ofp(z) is defined
asH = —fp lnp ) dx and the relative entropy of(x) overq(z) is defined as

= [ p(z) Inp(x ( ) da.



ASSIGNING PROBABILITIES

Assigning a probability distribution to a quantify to represent our knowledge about
it depends on the nature of that knowledge. We consider firstdases: i) a set of
expected values and ii) a set of direct observationohe main tool for the first is
the Maximum Entropy Principle (MEP) [2, 3, 4, 5] and for thesed is the Maximum
Likelihood (ML). We then will see the link between the two apaches.

Maximum Entropy Principle (MEP)

The mathematical problem is stated as:
Givenasetof datatype 1: dy = E{¢x(X)} =" pj dr(w;), k=1,--- | K, assign
the probabilitie = {p1,---,pn}.
This problem has, in general, an infinite number of possiblat®ns. The main tool
here to choose one of them is the Maximum Entropy PrinciplERW
Among all the possible solutions choose the one with maxiraatropy

maximize H(p ijlnpj s.t. Zp]¢k (wj)=di, k=1, K

The solution is obtained by defining the Lagrangian
n K n
== pilnpi+> M (ij Pr(wy) — dk)
j=1 k=0 j=1

% =0—p;= Z y €XP [ Zk 1%%(%)}

oL Ban(A X
e = 0— — o = =dp — A\

and finding its stationnary point{

gives the ME solution:

P = Z(l}\*) exp [—ZAZ%(%‘)] = exp [—Ao - ZAZ%(%)]

k=1

where Z(A) =exp[Ao] = Z;‘:l exp [— Zszl )xkgzﬁk(wj)]
For the continuous case, by extension, we have:

maximize H (p) = —/p(a:) Inp(z) dz s.t. /p(x)gzﬁk(x) de=dy, k=1,--- K

Again writing the expression of the Lagrangian

E:—/( Inp(x da:+2)\k</ (z) dz — dk)



and finding its stationnary point, we obtain

p(z) = exp[ Z)‘k¢k: ]

where  Z(A) =exp[A\] = [exp [— S 1)\k¢k(wj)}
In both cases, this solution has the following propertles:

omZ(A)  Oh(N)
dlnZ(A) INo(N)
TN ooy e ®)alX),

H=X+Y ME{¢:(X)} and Hmax=Xo+»  Mds.
k k

For more details see [6].

Maximum Likelihood (ML)

Considering the case where we have observed a set of diregplesix =
{z1,---,zy} of X and we want to assign a probability distributignto it to rep-
resent this knowledge. The main idea behind the Maximumlih&ed (ML) approach
is to consider a parametric family(z|f) to represent this knowledge. Then, it is
assumed that the samples are obtained independently from this distribution thus
defining the likelihoodZ(6) = p(x;0) = Hj.vzlp(xj\e). Then, the Maximum Likelihood

estimate is defined @s= arg max; {L(x]0)}. FinaIIy,p(x@ will represent the state of
knowledge of this model and those data.
A particular case of parametric family is the exponentiahilg where p(z|0) is the

the following form
29k¢k ]

for which we can see some link between ME and ML solutions.

We also may note that, even those methods caltedparametrichave a parametric
form. For example in Kernel based methoad:|0) = Zj.v:l@j h(x —x;) whereh is the
Kernel, depends on at least+ 1 parameters.

p(x;0) =

exp

Link between MEP and Maximum Likelihood (ML)

Considering the continuous case and the two following moisl and their corre-
sponding solutions:



Datatype 1: d, = E{¢n(X)} = [p(z)¢ ( ydo, k=1,--- K
ME solution:  p(z:\) = 71y exp[ zkzlxka;k(x)}
. :dk, k=1, K
Data type 2N direct samples: « = {xy,--- ,xN}
Choosing a param. family:  p(z;0) = exp[ SO Ok )]
and assuming;; iid: plx:0) = Hj\’ |75 exp[ S 16k¢k(x])}
we can define the Likelihood:L(x|0) = Zn(g) exp [ ijlzkzlekd)k(xj)]

A solution of;

and the maximum likelihood (ML) solutio = argmaxy{L(x|0)} is given by:

— ORI — AT ()
We can then easily see the I|nk between the two problems. \WWeem@hasize again
that this link is one of the properties of the expontentiahilyt of probability density
functions. See [7, 8, 9] for more details.

UPDATING PROBABILITIES
Updating a prior probability distribution to a posteriomopability distribution concern-
ing a quantityX also depends on the nature of the new knowledge. Here tommnggder
two cases: i) a set of expected values and ii) a set of direntimect observations o .
The main tool for the first is the Minimum Relative Entropyritiple (MREP) and the
Bayesian approach for the second. We then will see the litd®n the two approaches.

Minimum Relative Entropy Principle

The mathematical problem is stated as: Given the prior ftibas q and a set of
datatype 1: dy =E{¢p(X)} =2 7  pjdu(w;), k=1,---,K, updategtop.

The Minimum Relative Entropy Principle (MREP) writes:

minimize K (p : q) ijlnpj/qj s.t. ijqbk wj)=dp, k=1, K

The solution is given by

3 P [ Z Ao (w; ] whereZ(\) = qu exp [— > Am(wj)]

bj =

For the continuous case, we have:

minimize K(p: q) = /p(a:) ln% dx s.t. /p(a:) Op(x)de=dy, k=1,--- | K



and the solution is given by

exp[ ZAkngk ]WhereZ(A):/ exp[ ZAkngk ] dz

More details can be found in the following works [10, 11, 12, 14, 15, 16,17, 18, 19].

p(r) =

Bayesian approach

As in the ML approach, if we have a set of samples= {z,---,zy} of X for
which we have choosed a parametric family:|¢) and a likelihood functionp(x|f) =

Hj.vzlp(xj\e) and if we also have some prior knowledge on the unknown paeastein

the form of a prior probabilityr(0), then the Bayesian approach consists in computing
the posterior probability

m(0) p(x|0) _ w(8) p(z]0)

p(x) [ w(0)p(x]0) d(6)
and then choosing an estimate foifrom this posterior. The general approach is to
choose a utility function.(6, ), compute its expected valugt) = [(9,0) p(0|x) db
and choose as a point estimafor argming {ﬂ(é)}.

Of particular interest is the case of exponential familiesf(z|0) and for(6) for
which we can try to see some link between MRE and the Bayesiatians.

p(flz) =

Link between MKL and Bayesian approach

Considering the continuous case)éfwith prior q(x|)\0) and the
Datatype 1: dy =E{¢y(X)} = [p(z)pp(z) dz, k=1,--- K,
the MKL solution is given by

p(x|X) = ( eXp[ Z)\kz¢k ]

dnZ(N)
—7:d k:]_ oo K_
(9)% k> ) )

we note the relation between the prior and the posterior'

wherel is the solution of:

p(x|A) o< g(x|Ao) exp[ Z)\kﬁék ]
a posteriori o< a priori Datatypelllkellhood

Now, considering the
Datatype 2: N direct samples: x = {zy,---,zn}



with the following:

Choose a param. family:  p(z|0) = 9 exp[ SK  Oor(a )}

Define the Likelihood: £([0) = g exp [ DAED I ekapk(a:j)}
Assign a prior ont 7(0|xo)

and applying Bayes rule, we have:

pOlz) o w(Blwy)  exp [-ZZ@ka;k(xj)]

j=1 k=1
a posteriori o a priori Data type 2 likelihood

We can then compare the two approaches. However, we mayhaite tMKL, we have

a posterior lawp(z|\) onx which is related to the prior law(x|\y) and in the Bayesian
approach, we have a posterior lad|x) on 6 which is related to the priof(0|x).
Note that we introduced(x|\y) andr(6|x,) for symmetry and for some more detailed
developments. To develop more deeply these relationsjdzmeny point estimators of
6 such as:

. 7 e L(w\@ (0) d:z:
or the mode: 0 = argmaxy {7r(«9) (:z:|6)}

then, we can question ourselves on the significatiom(erf\@) and its link with p(x|A)
and a few more questions:

« How to assigny(z|Xg) or 7(8]x) ?

How to usep(z|\) or p(f|x) ?

How to compute EX '} usingp(z|A) or E{6} usingp(d|x) ?

Any link betweeng(z|Aq) andn(0|x,) or betweerp(z|\) andp(f|x) ?

MULTIVARIATE EXTENSIONS

ConsiderX a random vector with pdf(x), the priorg(x|A,) and the Data type 1:

The ME and MKL relations can easily be extended to this malfiate case and we
K

have: p@A) o g(@A)  exp [—Z)\mk(az)

Then, the following properties can be established:

+ Minimizing K(p : ¢) becomes equivalent to minimizing is a distance measure
D(X; o) between the parameteps and A, (Primal-Dual optimization), whose
expression depends qx|\o);



« If (x| o) is separable thep(x|\) is also separable;
« If we note by

Eq{X}:/a:q(a:\)\o) dx =z, and L:p{X}:/a:p(a:M) dr ==z,

then minimizingK (p : ¢) — minimizing A(z, : x,).

Now, we consider the Data type 31 indirect samplesy = {y1,--- ,yn} Where A
isaM x N matrixandy = E{AX} = AE{X} and the prior measurgx|\,). Then,
again, it is easy to show that

p(x[A) o gx[Xo) exp [—Z/\k[Aw]k)]

and we have the following properties:

« Minimizing K (p : ¢) becomes equivalent to minimizinG(\; A,) and if we are
only interested on the mean valuesit can be obtained by minimizing a distance
measurel (x : x,) betweenr andx, subject to the data constraintset = y. The
expression of\ (x; x,) depends on the family form af x| \);

« If g(x|Ao) is separable then (z;@o) = S0 | Aj(550,);

« If g(x) is a Gaussian, theR(A; \g) = ||A — Xo||? andA(x; o) = ||& — xo||%;

« If g(z) is a Poisson measure, thevix; xo) = > z;In(x;/0;) + (2; — 20;).

See [15, 16, 18, 19, 20] for more details.

BAYESIAN APPROACH FOR INVERSE PROBLEMS

Finally, we consider the Data type & indirect samplesy = {y1,--- ,yn } WhereA is
aM x N matrix andy = Ax + € and the prior probability laws:

1 1
(€l01) = —— —0! d 0y) = —— —0}
Pe(€ltr) 70 exp [~61Q(€)] and p(z|f) 700) exp [—05¢ ()]
and we consider the problem of inferring @rand the hyperparametetsandd, . Here,
the appropriate tool is the Bayesian one.
The case wheré; and#, are known is now classical. We have to write down the
expression of the posterior

p(xly,0) = p(yle,0,) p(x|6z)/p(yld), 6= (61,02)
where pylx,0h) = pe(y— Ax|d))
and p(ylo) = [p(ylz,01)p(z|d;) de
and then infete using:
Mode x(0) =argmaxy{p(x|y,0)} which needs optimization;

Mean  #(0) = [z p(z|y,d) dz =1 f‘”pf(’;?l’m"’ef;?i‘”;‘)’)di‘” which needs integation;

Sampling x ~ p(x|y,0) which needs Monte Carlo techniques.



Whend#, andd, are unknown, then we have to write down the joint posterior:

p(az,H\y)mp(y\az,Hl) p(w“g?) 7T(¢9), 6:(‘917Q2)

and then, depending on the final objective, do one of theviafig:

e inferring x : p(xly) = [plx,bly)dd

Mode T = argmax{p(x|y)}

Mean z = [ap(zly)de= [ [zp(x,0)y)dxdd
e inferring 6 : p(Oly) = [p(x.bly)dx

Mode 0 = argmax {p(0ly)}

Mean ) = [0ply)dd= [ [6p(x,bly)dedd

e inferring (z,0): (x,0) ~ p(x,0ly)

Joint MAP : (z,0)= argm%x{p(a:ﬁ\y)}

Gibbs sampling: 0 ~ p(f|lxz,y) — x ~p(x|0,y) iterative
Jointsampling: 6 ~ p(fly) — x ~p(x|,y)

Looking at these relations:

p(x[0,y) p(yl0) =(0)

e p(y)
_ p(yl0,x) p(x|0)

P = p(y|0)

p(oly) = PO

p(y)

we see that a key term in all these relations is the incomfiletéhood (or evidence)
of the parameterg(y|#) which is related to the complete likelihogdy,x|6) by the
following integral equation

p(ylh) = / ply./6) dz = / plyl.,0) p(x9) da

which, unfortunately, excepted the Gaussian case, hasnmnaaytical solution. Also,
noting that

= 1w [ ataley PY210)
p(ulo) = 1o [ afaly) ZETE o

> | q(azwmn% dz = H(q(|0')) + Eyelo, {Inp(y. X|6))

which is valid for anyy(x|0’) leads to the EM algorithm with(x|0) = p(x|y, ") which
is the posterior law for: with the value of the parametefisat previous iteration.



In the same way, we have

Inp(y) = m// >d do

p(y,wﬁ)
-/ q<w,e>1nm de = H(g(,0)) + (np(y, X,0)) 0
where(lnp(y, X, ©)), .. ¢ = By {Inp(y, X, ©)}. This inequality relation will lead,

as we will see in the next section, to the variational Bayesiwix, ¢) is choosed to be
separable, i.gj(x,0) = ¢1(x|y) ¢2(0]y). See [13, 21, 22, 14, 15, 16, 17, 18, 19].

COMPUTATIONAL ASPECTS OF THE BAYESIAN APPROACH

Despite of the seemingly ever growing computing power,afaee still problems (e.qg.

in image processing) for which it is difficult to optimize arntegrate or sample from
the joint posteriop(x,d|y). This constitutes a need for its approximatation by simpler
expressions. One of the classical tools is the Laplace appation which can be a
valid one when this joint posterior is unimodal. The secolagsical one is separable
approximation or Variational Bayes which is summarizedbel

Variational Bayes

The mainidea here is thatx, §|y) is not, in general, separablednd neither in com-
ponents ofc nor in components df. A first step then is to find two distributions(x|y)
andg.(f|y) such thatp(x,0|y) can be approximated by(x,0|y) = ¢1(x|y) ¢2(0]y).
Then all computations are easier usifig, 0|y) in place ofp(x,0|y). The two free dis-
tributionsq, (x|y) andg(0|y) are then to be found such thiat(q; ¢, : p) or K (p: ¢1 ¢2)
be minimized. Writing the first one:

0
K(ga:p) = //Q1 2ly) go(0]y) n LEWCOY) o

p(z,0]y)
= [ately) ([ ELEE @) g
= [ ([ alalyn ™SR g0 ) @

and noting that< (¢; ¢» : p) is a convex function of; andg,, this optimization can be
done iteratively

T _ - ~0 .\ L [ }
(xly) = argrrﬁn{K <q1 ® p)} =7 exp [< Inp(xz,y|®) > 9 (01y)

7(0)

3 0ly) = argmin {K (@ & p) } =757 o0 < Wp(X 9l6) > 0, |
a2 2 l



wheret notes the iteration number ard. >, mean the expectation over For more
details on this approach see [23, 24].

WHERE DO WE HAVE TO GO NOW?

The main idea in this tutorial was first to give a brief revieivtloe main established
concepts. Now, the question is what are the directions toiolSome of the different
aspects which will be discussed, | am sure, in this workshephe following:

« There are still great place to the reserach on finding axioseded to define
a quantity which will represents th@formation or the entropy Depending on
different levels of those axioms, we may find different exgsrens for theentropy
Then, it will be interesting to study more in details thospressions and solutions
we may obtain for assigning or updating probability digitibns.

« As we could see in this paper, depending on the nature of tiaexamay have, the
tools for assigning or updating probability distributicare different. More insights
and studies are still needed to establish and to interpegpdissible links between
them.

| can also give here some directions in relation to the sudjen which my PhD
students and myself are interested. These subjects ateddla the applied inverse
problems. Here, | summarize those directions:

+ Forward modeling and assigning a probability law to the mrwshich leads us to
the likelihood expression is one of the crucial steps. In, felcoosing appropriate
unknown quantities and appropriate observable quantitieand finding a simple
forward model:

y=A(x)+e— L(y|z,01) = q(y — A(x)|01) = p(y|z,01)

relating them in such a way that the errersan be approximated to be independent
of x, centered, white and having an appropriate probabilityribistion is one of
the first and crucial steps for real applications. In engimgesciences, this can be
done through good knowledge of the physics of the problenevAdases of such
linear or nonlinear modelings can be found in [18, 19, 25,24,

« Modeling unknown quantities and assigning probability laws:
Simple models: p(x]0;)
Models with hidden variables: p(x|z,6,), p(z|0s)
Here, in general, we use Markovian models directly #0%|0;) or Hierarchical
Markovian models fop(x|z, ;) and/or forp(z|6s). A few cases of such linear or
nonlinear modelings can be found in [26, 27].
- Assigning prior laws to the hyperparameterg(6):
For this step, we use often Jeffreys, Entropic [28, 29, 30,321 33] or Conjugate
priors which are inter-related. For practical applicatiptihe Conjugate priors have
been used with success in many applications.



10.

11.

12.

+ Obtaining expressions of the posterior laws

p(x.0ly) o p(y|x,6r) p(x|d:) 7(6), 0= (61,02)
p(a:,z,H\y) X p(y\a:,@l)p(a:|z,«92)7r(z|83)7r(0), 0:(817‘92763)

« Using posterior laws to give practical solutions:
From this point, the Bayesian interpretation gives us a fopassibilities. For
summarizing the posterior, one can choose between Joined)ddeans, Marginal
modes, or just sampling using the MCMC methods. However, wstrbe aware
that:
— Computing modes needs huge dimensional multivariate agdiion;

— Computing means needs huge dimensional multivariateratieq;

— Sampling is a good tool for exploring the whole probabiligndity and com-
puting approximate means. However, sampling from a noassdge multi-
variate probability law is not so easy.

« Finding appropriate approximations to do fast computation
Laplace approximation, Separable approximation, Vateti and Mean Field ap-
proximations are the main tools.

+ Evaluating the performances of the obtained algorithmddgs ane of the main
crucial points.

« Evaluating the uncertainties when a solution is given sthook to be forgotten.
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