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Abstract. In ref [1] the notion of statistically dual distributions is introduced. The reconstruction of
confidence density [2] for the location parameter for several pairs of statistically dual distributions
(Poisson and Gamma, normal and normal, Cauchy and Cauchy, Laplace and Laplace) in the case
of single observation of the random variable is an unique. It allows to introduce the Transform
between the space of observed values and the space of possible values of the parameter.
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INTRODUCTION

As shown in refs. [3, 4], in the framework of frequentist approach we can construct the
probability distribution of the possible magnitudes of the Poisson distribution parameter
to give the observed number of events n̂ in a Poisson stream of events. This distribution,
which can be called a confidence density function of a parameter, is described by a
Gamma-distribution with the probability density function which looks like a Poisson
distribution of probabilities. This is the reason for naming this pair of distributions as
statistically dual distributions. Also, the interrelation between the Poisson and Gamma
distributions allows to reconstruct the confidence density of the Poisson distribution
parameter by a unique way [1] and, correspondingly, to construct any confidence interval
for the parameter 1.

According to B. Efron [5] the confidence density is the fiducial [6] distribution of
the parameter. This distribution is considered as a genuine a posteriori density for the
parameter without prior assumptions.

The same relation, which allows one to reconstruct the confidence density of a param-
eter in a unique way, exists between several pairs of statistically self-dual distributions
(normal and normal, Laplace and Laplace and Cauchy and Cauchy). As consequence,
the Transform between the space of realizations of the random variable and the space of
possible values of the parameter takes place [2, 7] in this case.

1 If we have a procedure which allows us to construct confidence, or credible, or tolerant interval we
can reconstruct, correspondingly, the confidence, or credible, or tolerant density, and that contains more
information.



Note that the posterior distribution of the parameter also is used for the definition of
conjugate families in the Bayesian approach. The interrelation between the statistically
dual distributions and conjugate families is discussed in ref. [2].

The notion statistically dual distributions is introduced in next Section. Section 3
describes the Transform between the space of realizations of the random variable and
the space of possible values of the parameter. The method of the confidence density
construction for signal with a known background is shown in Section 4 as an example of
the Transform applying. In Section 5 the confidence density and the Bayes’ Theorem are
used for estimation of the uncertainty in distinguishing of two simple hypotheses under
the planning of experiment [8]

STATISTICALLY DUAL DISTRIBUTIONS

Let us define statistically dual distributions.
Definition 1: Let φ(x,θ) be a function of two variables. If the same function can be

considered both as a family of the probability density functions (pdf) f(x|θ) of the
random variable x with parameter θ and as another family of pdf’s f̃(θ|x) of the random
variable θ with parameter x (i.e. φ(x,θ) = f(x|θ) = f̃(θ|x)), then this pair of families of
distributions can be named as statistically dual distributions.

The statistical duality of Poisson and Gamma-distributions follows from simple dis-
course.

Let us consider the Gamma-distribution Γ1,n+1 with probability density [8]

gn(µ) =
µn

n!
e−µ, µ > 0, n > −1. (1)

It is a common supposition that the probability of observing n events in the experiment
is described by a Poisson distribution with parameter µ, i.e.

f(n|µ) =
µn

n!
e−µ, µ > 0, n ≥ 0. (2)

One can see that if the parameter and variable in Eq. (1) and Eq. (2) are exchanged,
in other respects the formulae are identical. As a result these distributions (Gamma and
Poisson) are statistically dual distributions.

These distributions are connected by the identity [3] (see, also, this identity in another
form in refs. [9, 10, 11])

∞
∑

i=n̂+1

f(i|µ1)+
∫ µ2

µ1

gn̂(µ)dµ+
n̂

∑

i=0

f(i|µ2) = 1, (3)

i.e.
∞
∑

i=n̂+1

µi
1e

−µ1

i!
+

∫ µ2

µ1

µn̂e−µ

n̂!
dµ+

n̂
∑

i=0

µi
2e

−µ2

i!
= 1

for any real µ1 ≥ 0 and µ2 ≥ 0 and non-negative integer n̂. We can suppose that n̂ is a
number of observed events.



The definition of the confidence interval (µ1,µ2) for the Poisson distribution parame-
ter µ using [3, 2]

P (µ1 ≤ µ ≤ µ2|n̂) = P (i ≤ n̂|µ1)−P (i ≤ n̂|µ2), (4)

where P (i ≤ n̂|µ) =
n̂

∑

i=0

µie−µ

i!
, allows one to show that a Gamma-distribution Γ1,1+n̂

is the probability distribution of different values of µ parameter of Poisson distribution
on condition that the observed value of the number of events is equal to n̂, i.e. Γ1,1+n̂ is
the confidence density of the parameter µ. This definition is consistent with the identity
Eq. (3). Note, if we suppose in Eq. (3) that µ1 = µ2 we have a conservation of probability.
The right-hand side of Eq. (4) determines the frequentist sense of this definition.

Another example of statistically dual distribution is the Cauchy distribution with
unknown parameter θ and known parameter b. Here we also can exchange the parameter
θ and variable x while conserving the same formula of the probability density.

The probability density of the Cauchy distribution is

C(x|θ) =
b

π(b2 +(x− θ)2)
. (5)

The probability density of its statistically dual distribution is also the Cauchy distribu-
tion:

C̃(θ|x) =
b

π(b2 +(x− θ)2)
. (6)

In such a way the Cauchy distribution can be named as statistically self-dual distribu-
tion. An identity like Eq. (3) also holds,

∫

∞

x̂
C(x|θ1)dx+

∫ θ2

θ1

C̃(θ|x̂)dθ+
∫ x̂

−∞

C(x|θ2)dx = 1, (7)

where x̂ is the observed value of random variable x and C̃(θ|x̂) is the confidence density.

THE TRANSFORM BETWEEN THE SPACE OF OBSERVED
VALUES AND THE SPACE OF POSSIBLE VALUES OF THE

PARAMETER

It is easy to show that the reconstruction of the confidence density is unique if Eqs. (3)
or (7) holds [1, 2].

As a result we have the Transform (both for Poisson-Gamma pair of families of
distributions and for statistically self-dual distributions)

∫

∞

x̂
f(x|θ1)dx+

∫ θ2

θ1

f̃(θ|x̂)dθ +
∫ x̂

−∞

f(x|θ2)dx = 1 (8)



between the space of the realizations x̂ of random variable x (with the probability density
f(x|θ)) and the space of the possible values of the parameter θ (with the confidence
density f̃(θ|x̂)), i.e.

f̃(θ|x̂) = Tcdx̂ (9)

where Tcd is the operator of the Transform. Here θ1 and θ2 are the bounds of the
confidence interval for location parameter θ. As is shown above in the case of Gamma-
and Poisson distributions, the two integrals are replaced by sums and −∞ is replaced by
0.

The Transform Eq. (9) allows one to use statistical inferences about the random
variable for estimation of an unknown parameter.

The simplest examples of this are given by several infinitely divisible distributions.
Definition 2: A distribution F is infinitely divisible if for each n there exist a distri-

bution function Fn such that F is the n-fold convolution of Fn.
As known the Poisson, Gamma-, normal and Cauchy distributions are infinitely divis-

ible distributions. The sum of independent and identically distributed random variables,
which obey one of the above families of distributions, also obeys the distribution from
the same family. Applying the Transform Eq. (9) to this sum allows one to reconstruct
the confidence density of the parameter in the case of several observation of the same
random variable. It means that we construct the relation

f̃(nθ|x̂1 + x̂2 + . . .+ x̂n) = Tcd(x̂1 + x̂2 + . . .+ x̂n), (10)

where Tcd is the operator of the Transform Eq. (9), the set x̂1, x̂2, . . . , x̂n are the observed
values. Thereafter we reconstruct the confidence density of θ, i.e. f̃(θ|x̂1, x̂2, . . . , x̂n).

The use of the confidence density also can be formulated in Bayesian framework.
Let us consider, as an example, the Cauchy distribution. We suppose in our approach

that the parameter θ is not a random value and before the measurement we do not
prefer any of values of this parameter, i.e. possible values of the parameter have equal
probability and a prior distribution of θ is π(θ) = const. Suppose we observe x̂1 and
update our prior via the Transform Eq. (9) to obtain C̃(θ|x̂1), which is the pdf of the
Cauchy distribution. This becomes our new prior before observing x̂2. It is easy to show
that in the case of the observing x̂2 the reconstructed confidence density (or our next
new prior) C̃(2θ|x̂1 + x̂2)

2 also is the pdf of the Cauchy distribution. By induction this
argument extends to sequences of any number of observations

C̃(nθ|x̂1 + x̂2 + . . .+ x̂n) = Tcd(x̂1 + x̂2 + . . .+ x̂n),

2 As known, if C(x1|θ1, b1) = b1

π(b2
1
+(x1−θ1)2)

and C(x2|θ2, b2) = b2

π(b2
2
+(x2−θ2)2)

then C(x1 +x2|θ1 +

θ2, b1 + b2) = b1+b2

π((b1+b2)2+((x1+x2)−(θ1+θ2))2)
with statistically dual distribution C̃(θ1 + θ2|x1 +x2, b1 +

b2) = b1+b2

π((b1+b2)2+((x1+x2)−(θ1+θ2))2) . It means that we can reconstruct C̃(θ|x̂1, x̂2) by the using

C̃(2θ|x̂1 + x̂2,2b) (in our case θ1 = θ2 = θ and b1 = b2 = b).



i.e. we use the iterative procedure

C̃(θ|x̂1, x̂2, . . . , x̂n−1, x̂n) = Tpd(C̃(θ|x̂1, x̂2, . . . , x̂n−1), x̂n), (11)

where Tpd is the operator of the Transform between a priori density and a posteriori
density of the parameter.

Note that a prior density here is only the result of direct calculations of probabilities
in frame of the Transform Tpd with using of the knowledge about law of distribution of
the random variable, i.e. we construct the confidence density without any suppositions
about a prior (“uniform prior” is not a prior density because if π(θ) = const then
∫

∞

−∞( or 0) π(θ)dθ =∞). On the other side, a prior knowledge about law of distribution of
the parameter in the case of the random origin of parameter can be used for construction
of the confidence density.

THE METHOD OF CONFIDENCE DENSITY CONSTRUCTION
FOR SIGNAL WITH A KNOWN BACKGROUND

The confidence density is more informative notion than the confidence interval and
gives many advantages in the construction of the confidence intervals. For example,
the Gamma-distribution Γ1,n̂+1 is the confidence density of the parameter of Poisson
distribution in the case of the n̂ observed events from the Poisson flow of events [3, 4].
It means that we can reconstruct any confidence intervals (shortest, central, with optimal
coverage, . . . ) by the direct calculation of the probability density of Gamma-distribution.

The next example illustrates the advantages of the confidence density construction.
Let us consider the Poisson distribution with two components: the signal component
with a parameter µs and background component with a parameter µb, where µb is known.
To construct confidence intervals for the parameter µs of a signal in the case of observed
value n̂, we must find the confidence density P (µs|n̂).

Firstly let us consider the simplest case n̂ = ŝ+ b̂ = 1. Here ŝ is the number of signal
events and b̂ is the number of background events among the observed number n̂ of
events.

The b̂ can be equal to 0 and 1. We know that the b̂ is equal to 0 with probability
(Eq.(2))

p0 = f(b̂ = 0|µb) =
µ0

b

0!
e−µb = e−µb (12)

and the b̂ is equal to 1 with probability

p1 = f(b̂ = 1|µb) =
µ1

b

1!
e−µb = µbe

−µb . (13)

Correspondingly, P (b̂ = 0|n̂ = 1) = P (ŝ = 1|n̂ = 1) =
p0

p0 +p1
and

P (b̂ = 1|n̂ = 1) = P (ŝ = 0|n̂ = 1) =
p1

p0 +p1

.



TABLE 1. 90% C.L. intervals for the Poisson signal mean µs, for total events observed n̂, for
known mean background µb ranging from 0 to 15.

n̂\µb 0.0 1.0 2.0 6.0 12.0 15.0

0 0.00, 2.30 0.00, 2.30 0.00, 2.30 0.00, 2.30 0.00, 2.30 0.00, 2.30
1 0.09, 3.93 0.00, 3.27 0.00, 3.00 0.00, 2.63 0.00, 2.48 0.00, 2.45
2 0.44, 5.48 0.00, 4.44 0.00, 3.88 0.00, 3.01 0.00, 2.68 0.00, 2.61
3 0.93, 6.94 0.00, 5.71 0.00, 4.93 0.00, 3.48 0.00, 2.91 0.00, 2.78
4 1.51, 8.36 0.51, 7.29 0.00, 6.09 0.00, 4.04 0.00, 3.16 0.00, 2.98
5 2.12, 9.71 1.15, 8.73 0.20, 7.47 0.00, 4.71 0.00, 3.46 0.00, 3.20
6 2.78,11.05 1.79,10.07 0.83, 9.01 0.00, 5.49 0.00, 3.80 0.00, 3.46
7 3.47,12.38 2.47,11.38 1.49,10.37 0.00, 6.38 0.00, 4.19 0.00, 3.74
8 4.16,13.65 3.18,12.68 2.20,11.69 0.00, 7.35 0.00, 4.64 0.00, 4.06
9 4.91,14.95 3.91,13.96 2.90,12.94 0.00, 8.41 0.00, 5.15 0.00, 4.42

10 5.64,16.21 4.66,15.22 3.66,14.22 0.02, 9.53 0.00, 5.73 0.00, 4.83
20 13.50,28.33 12.53,27.34 11.53,26.34 7.53,22.34 1.70,16.08 0.00,12.31

It means that the distribution of the confidence density P (µs|n̂ = 1) is equal to the
sum of distributions

P (ŝ = 1|n̂ = 1)Γ1,2 +P (ŝ = 0|n̂ = 1)Γ1,1 =
p0

p0 +p1
Γ1,2 +

p1

p0 +p1
Γ1,1, (14)

where Γ1,1 is the Gamma distribution with the probability density gŝ=0(µs) = e−µs and
Γ1,2 is the Gamma distribution with the probability density gŝ=1(µs) = µse

−µs . As a
result, we have the confidence density of the parameter µs

P (µs|n̂ = 1) =
µs +µb

1+µb

e−µs . (15)

Using formula (Eq.(15)) for P (µs|n̂ = 1) and formula (Eq.(4)), we construct the
shortest confidence interval of any confidence level in a trivial way.

In this manner we can construct the confidence density P (µs|n̂) for any values of n̂
and µb. We have obtained the known formula [12, 13, 14]

P (µs|n̂) =
(µs +µb)

n̂

n̂!
n̂

∑

i=0

µi
b

i!

e−µs . (16)

The numerical results for the confidence intervals are shown in Table 1.

THE “INVERSE TRANSFORM”

In this Section the approach to estimation of quality of planned experiments [8] is used to
show the possibility of the “Inverse Transform”. This approach is based on the analysis
of uncertainty, which will take place under the future hypotheses testing about the
existence of a new phenomenon in Nature. We consider a simple statistical hypothesis
H0: new physics is present in Nature (i.e. µ = µs +µb in the Eq.(2)) against a simple



alternative hypothesis H1: new physics is absent (µ = µb). The value of uncertainty is
determined by the values of the probability to reject the hypothesis H0 when it is true
(Type I error α) and the probability to accept the hypothesis H0 when the hypothesis
H1 is true (Type II error β). This uncertainty characterises the distinguishability of the
hypotheses under the given choice of critical area.

Let the both values µs and µb, which are defined in the previous Section, be exactly
known. In this simplest case the errors of Type I and II, which will take place in testing
of hypothesis H0 versus hypothesis H1, can be written as follows:























α =
nc
∑

i=0

f(i|µs +µb),

β = 1−
nc
∑

i=0

f(i|µb),

(17)

where nc is a critical value and f(i|µ) is defined by the Eq.(2).
Let the values µ̂s = ŝ and µ̂b = b̂ be known, for example, from Monte Carlo experiment

with integral luminosity which is exactly the same as the data luminosity later in the
planned experiment. It means that we must include the uncertainties in values µs and µb

to the system of the equations Eqs.(17). As is shown in ref. [8] (see, also, the generalised
case in the same reference) we have the system



























α =
∫

∞

0
gŝ+b̂(λ)

nc
∑

i=0

f(i|λ)dλ =
nc
∑

i=0

Ci

ŝ+b̂+i

2ŝ+b̂+i+1
,

β = 1−
∫

∞

0
gb̂(λ)

nc
∑

i=0

f(i|λ)dλ = 1−
nc
∑

i=0

Ci
b̂+i

2b̂+i+1
,

(18)

where the critical value nc under the future hypotheses testing about the observability

can be chosen in accordance with test of equal probability [15] and C i
N is

N !

i!(N − i)!
.

Note, here the Poisson distribution is a prior distribution of the expected probabilities
and the negative binomial (Pascal) distribution is a posterior distribution of the expected
probabilities of the random variable. This transformation of the estimated confidence
densities gŝ+b̂(λ) and gb̂(λ) (probability densities of the corresponding Γ−distributions)
to the space of the expected values of the random variable can be named the “Inverse
Transform”.

CONCLUSIONS

We have shown that the statistical duality allows one to connect the estimation of the
parameter with the measurement of the random variable of the distribution due to the
Transform Eq. (9). It gives the tool to construct the confidence densities.

The using of the confidence densities for the construction of the confidence intervals
and for the construction of a posterior distributions of probabilities is presented in
examples.
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