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Abstract. A reconstruction of the 3-dimensional distributions of timagnetic hyperfine field,

guadrupole splitting and isomer shift from the measuredmedsional Mdssbauer spectrum is
extremely difficult in general case. The paper shows thaabkd reconstruction can be made
by means of the Maximum Entropy Method without prior assuon® concerning correlations
between the parameters of interest. We also show how thegtrld be chosen in order to arrive
at the physically meaningful results.
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1. INTRODUCTION

The Maximum Entropy Method (MEM) [1] was already used to gmalmany spectro-
scopic data [2, 3, 4, 5]. This powerful method was not extextgiapplied to the analysis
of the M6ssbauer spectra where presence of the distribofibgperfine field parame-
ters makes the spectra complicated and the spectra int&tiprebecomes ambiguous
because of assumptions one makes in order to get the hypeefuheistributions. The
one dimensional Mdssbauer spectrum contains informatiothe distribution of the
hyperfine magnetic fieldB), quadrupole splittind@.S) and the isomer shift/.S), not
speaking about orientations of the hyperfine magnetic fielddsch cause often a lot
of problems in some experiments. We checked recently [G]rdither complicated 2-
dimensional distributions iiB,1.5) space can be reconstructed from the Mdssbauer
spectra by MEM technique. This paper deals with more difficases. In spite of the fact
that the 3-dimensional reconstruction(@f, .S, 1.5) distribution from a single spectrum
seems almost impossible, a well-known inherent ambiguiylem [7, 8] consisting in
the fact that many distributions of the hyperfine field can f@lvo the experimental
spectrum, makes the situation even worse.

In short, when the Zeeman interaction is dominating, thesWWaser spectrum consists
of lines measured as a function of the source veldcity), wherek =1,2,..., N with N
being usually 256. In typical experiment witiFe-based absorption, for given hyperfine
magnetic fieldB (in Tesla), isomer shiff S (in mm/s) and quadrupole splittin@.S (in



mm/s), the recoilless absorption occurs at six velocifie$ (Zeeman'’s sextet) linearly
dependent o, .S andI S, see, e.g., [6, 7, 8, 9]. In the case of infinitely thin absgrbe
the line intensitied; should be as 3:2:1:1:2:3. More general formulas are givaefin
[9].

A given ith line contributes to théth channel in the velocity spectrum the intensity
proportional to

I;
V) =2+ (T/2)2 )
where the natural width;, of the line from Mdssbauer source is 0.22—-0.25 mm/s (in our
calculations 0.24 mm/s was chosen). When the electric figldignt accompanies low
magnetic hyperfine field, eight instead of six lines appe#r@spectrum. The intensities
have to be calculated from the solution of the so-called Hialmiltonian. In order not
to complicate further considerations we shall not deal il kind of complication,
neither with another one consisting in the spectra disingidue to the finite thickness
of an absorber or its possible magnetic texture.

There exist methods of reconstructing the hyperfine magrfieid distribution [10,
11, 12, 13, 14, 15, 16] from measured spectra. However, iard@make such recon-
struction, one has usually to assume certain correlatibndsn the parameters, 15,
and@S. To the best of the authors knowledge, there is no code empbiie to get, e.g.,
the distributions of5 and /.S independently of each other. Our earlier paper [6] showed
that this can be done when the analysis is carried out by nmegahe Maximum Entropy
Method. The first successful attempt to use this method farglesparameter distribu-
tion was published by Brand and Le Caér [17]. Dou et al. [1&duBayesian inference
theory to obtain the distribution of one paramefeassuming however a linear coupling
of two other parameterd § and@5) to B.

Ji =

2. MAXIMUM ENTROPY METHOD

Assume that the whole 3-dimensional space of parametersliwiaed into pixels and
the valuep,; denotes the probability of having the values of these paterfieorrespond-
ing to this particular pixel. Because the line intensitieslanear in the probabilities, the
intensitiedV;, measured (with uncertaintieg) atkth velocity channel will be described
theoretically by:
Npiz
T =) rijpj, wherek=1,2,....N. (2)
j=1
The transformation matriXr;; } can easily be evaluated (see references given in the
Introduction). We consider the distribution = pg os 15, Wwhich means that the indgx
denotes a collection of the three indices correspondingeovariablesB, QS andlS,
respectively. In other words three-dimensional mafyix} of the probability distribution
is written in egs. (2) and (4) as a single row.
As usual one is maximizing the Lagrangian [19]:

L:aS—%)@ (3)



under an additional constraint of normalization of theritsition {p; }. In eq. (3)

Npiz
S==>piln(p;/p0;) (4)

and .
X2=>)_ o (W, —Tj)2. (5)

k
In eq. (4),p0; denotes a prior (a model). The final equations to solve arswélittype

. _ 1 0x2

pO; exp < S apj>
Npm‘ 1 8)(2

S o0y exp (o 222 )

During calculations special care is taken to ensure thelggoéthe sum of measured
intensitiedV;, and the sum of intensiti€s; as calculated from eq. (2) for the distribution

{p;}-

Pj = ) j:1727‘”7Npi$‘ (6)

3. AMBIGUITY PROBLEM IN THE CASE OF PARAMAGNETIC
SPECTRA

Initially, the first goal of the analysis was to study the disition of (@S, /.S) parame-
ters in UFgSn, for which the Mdssbauer spectrum was measured in paratiagphase
[20], in which B = 0. In the experiment [19] well defined two quadrupole doublets
were found, and from the conventional approach to the Masshbspectra analysis the
situation looked simple and clear. The intensity ratio, ragpl, of the doublets was
as expected on the basis of the iron distribution amongreiifiecrystallographic sites.
However, the distribution obtained by MEM was unexpecteadlych richer, so we de-
cided to study the situation of simulated two doublé€sS, /.5) = (0.287,—0.064) and
(0.235,0.115) (all parameters are expressed in mm/s and are close to tfsefomed
in [19]). Fig. 1A presents the simulated spectrum consistif these doublets. The
Maximum Entropy Method with the uniform prior gave again yweich landscape of
P(QS,195), see Fig. 1B, almost identical with the one obtained frometagerimental
spectrum. It could thus seem at first that MEM produces simpbpng answers. This,
however is not the case. In fact, one can easily calculatehbdandscape seen in Fig.
1B shows all possible combinations of doublets and singlétish could explain the
measured spectrum, and satisfy the condition of the maximthe entropyS. The
symmetry with respect to the change of the sigiQ)sf derives simply from the absorp-
tion cross section.

Obviously, the aforementioned solution consisting of the toublets only is hidden
among other possibilities considered by MEM. In order tougetjue solution within the
framework of MEM one thus has either to know some physicaktraimts or try some
tricks. In the particular case considered by us we see tedirgt doublet is seen in Fig.
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FIGURE 1. Simulated Méssbauer spectrum close to the experimentaigrved for UFgSn at room
temperature [19]. (A) simulated (points) and reconstrd¢selid line) spectrum; (B) reconstruction using
uniform prior; (C) the spectrum corresponding to the stestgpeak (solid line) and the difference
spectrum (dashed line); (D) reconstruction from the défere spectrum.

1B with the highest intensity, i.e. it is found to be most likd herefore one can use it for
calculating the Mdssbauer spectrum which would resultligg tloublet only, and find
its intensity so to get the best agreement with the measyectrsim in the sense of the
least-square method. Next this partial spectrum can beasbd from the total one, so
the difference spectrum shown in Fig. 1C is obtained. Theeesmall narrow negative
dip in the difference spectrum which shows that the line fomsior/and shape was not
fitted precisely. This however, may well be due to the griddusied does not affect the
final result. The MEM analysis of the difference spectrunvésano doubts that in the
total spectrum there is no more than another doublet, sed Bign full agreement with
what would be obtained from conventional analysis of the $fdsier data. What we
see in the Fig. 1D is equivalence of the doublet to two Lolentiines at))S = 0, and
symmetric solution with respect to thgS = 0 axis. One can also note small noise in
the reconstructed spectrum at the border of the range inhathie reconstruction took
place. This may arise from the uncertainties in the diffeeespectrum used for analysis
and will have no physical meaning anyway.

The ambiguity problem is well-known and, as shown e.g. in[&3], when there is
more than a single distribution of hyperfine field parametette paramagnetic phase,



the infinite number of distributions can be produced, all dfich will be in perfect
agreement with the measured Mdssbauer spectrum. The MaxiEntropy Method
IS just giving its natural constraint which helps to find th@snlikely distribution.
However, on the example presented above one can see thatlittoado the MEM
constraint which selects mathematically plausible resule has to consider physical
implications of the obtained distributions and seek evalhtdor the distributions with
least number of features.
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FIGURE 2. Distributions obtained with the uniform prior: (A) the mamgl P(B,Q5); (B) the marginal
P(B,IS).

4. THREE-DIMENSIONAL PROBABILITY DISTRIBUTIONS

The feasibility of MEM in the case of 3-dimensional distrilmn was checked on the
following simulated distribution:

B-20)2 (QS—03)2 (IS—0.2)2
P(B.Q5.15) = P (_( 4 — 0.01 2t 0.01 ) )
(B—15)2 (QS—0.1)2 (IS+0.2)2
05 exp (_ 4001 o0l )
B-102 (QS+01)2 152
+0.25 exp (—( 1 2@ Oj.t)l ) —0‘01). (7)

Here B is expressed in Tesla, whil@S and 7.5 in mm/s. Normalization constant is
neglected as irrelevant parameter for our purpose. Theilledéd Mossbauer spectrum
corresponding to this distribution is shown by points in.R4 (the remaining content
of Fig. 3 will be discussed later on). We find that the simudatestribution (7) is recon-
structed perfectly if this distribution is used as a priartise MEM itself does not pro-
duce any substantial noise. On the other hand, although tssb&uer spectrum is still
reproduced very well, the reconstruction is rather poomifferm prior is used. There-
fore various non-uniform priors have been tried. Such griame easily guessed if one
has some experience with the Mdssbauer spectra. We alsw thatteeven in the case of
poor reconstruction, the marginal probabilities [eR(B,QS) = [ P(B,QS,15)dIS]



are reproduced very well, and show peak®3at 10,15 and 20, so the margindt(B)
can always be used as a prior. In addition, even from thetsesbtained with uniform
prior, see Fig. 2, one can postulate appearance of the sisbpgak a3 = 20, Q.S =0.3
and/S = 0.2, and thus use the following prior

B —20)2 S—0.3)2 15—-0.2)2
P(B,QS,IS):eXp(—( A 2@ 0.01 2L 0.01 ))
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FIGURE 3. (A) The pseudo-experimental spectrum and the fitted on&l(loé) with the prior as given
in eq. (8). The spectrum corresponding to this prior is shdwyrdashed line; (B) marginaP(B,Q5)
reconstructed from the prior (8); (c) same (B, I.5); (d) same forP(Q S, 1.5). All probabilities given
in arbitrary units.

Note that although inP(B) the intensities of two peaks found Bt= 15 and B =
10 were apparently different, we used in (8) the same amplifiodéoth of them,
while leaving rather large uncertainty concerning respectalues ofQS and/S. The
spectrum corresponding to this prior (note that it is quifeecent from the “measured”
one) and the results of the final reconstruction present&&tdimensional graphs are
shown in Figs. 3A-D. There is no doubt that in spite of somelsaréefacts the
reconstruction was successful. The similarity of Figs. 3@ 8D is not strange as the

formula (7) indicates linear correlation éf and(@).S. However, this correlation had to
be found by MEM!



5. CONCLUSIONS

It was shown that the reconstruction of the probability rdisition of the hyperfine

parameters from Mdssbauer spectrum is possible, althonghas to be very careful
with coming to conclusions. We have shown that the Maximuritdpry Method gives

the most likely distribution which, however, can have édttb do with the true one.
Therefore some extra work is needed for interpreting thetspe. This does not show
any weakness of the MEM method. Just the opposite is true.dBoald remember
that all conventional methods of analysis rely on assumptiof e.g. the number of
subspectra and possible correlations between hyperfireeneders. Therefore, a true
advantage of MEM consists in abandoning the latter assomgtiAs we showed, the
MEM can successfully be applied to reconstruction of evelin3ensional distributions
from the one-dimensional Méssbauer spectra, providedeliew that a proper non-
uniform prior is used.
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