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Abstract. A reconstruction of the 3-dimensional distributions of themagnetic hyperfine field,
quadrupole splitting and isomer shift from the measured 1-dimensional Mössbauer spectrum is
extremely difficult in general case. The paper shows that reliable reconstruction can be made
by means of the Maximum Entropy Method without prior assumptions concerning correlations
between the parameters of interest. We also show how the prior should be chosen in order to arrive
at the physically meaningful results.
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1. INTRODUCTION

The Maximum Entropy Method (MEM) [1] was already used to analyze many spectro-
scopic data [2, 3, 4, 5]. This powerful method was not extensively applied to the analysis
of the Mössbauer spectra where presence of the distributionof hyperfine field parame-
ters makes the spectra complicated and the spectra interpretation becomes ambiguous
because of assumptions one makes in order to get the hyperfinefield distributions. The
one dimensional Mössbauer spectrum contains information on the distribution of the
hyperfine magnetic field(B), quadrupole splitting(QS) and the isomer shift(IS), not
speaking about orientations of the hyperfine magnetic fields, which cause often a lot
of problems in some experiments. We checked recently [6] that rather complicated 2-
dimensional distributions in(B,IS) space can be reconstructed from the Mössbauer
spectra by MEM technique. This paper deals with more difficult cases. In spite of the fact
that the 3-dimensional reconstruction of(B,QS,IS) distribution from a single spectrum
seems almost impossible, a well-known inherent ambiguity problem [7, 8] consisting in
the fact that many distributions of the hyperfine field can fit well to the experimental
spectrum, makes the situation even worse.

In short, when the Zeeman interaction is dominating, the Mössbauer spectrum consists
of lines measured as a function of the source velocityV (k), wherek =1,2, . . . ,N with N
being usually 256. In typical experiment with57Fe-based absorption, for given hyperfine
magnetic fieldB (in Tesla), isomer shiftIS (in mm/s) and quadrupole splittingQS (in



mm/s), the recoilless absorption occurs at six velocities{vi} (Zeeman’s sextet) linearly
dependent onB, QS andIS, see, e.g., [6, 7, 8, 9]. In the case of infinitely thin absorber,
the line intensitiesIi should be as 3:2:1:1:2:3. More general formulas are given inref.
[9].

A given ith line contributes to thekth channel in the velocity spectrum the intensity
proportional to

Jk =
Ii

(V (k)−vi)2+(Γ/2)2
, (1)

where the natural width,Γ, of the line from Mössbauer source is 0.22–0.25 mm/s (in our
calculations 0.24 mm/s was chosen). When the electric field gradient accompanies low
magnetic hyperfine field, eight instead of six lines appear inthe spectrum. The intensities
have to be calculated from the solution of the so-called fullHamiltonian. In order not
to complicate further considerations we shall not deal withthis kind of complication,
neither with another one consisting in the spectra distortions due to the finite thickness
of an absorber or its possible magnetic texture.

There exist methods of reconstructing the hyperfine magnetic field distribution [10,
11, 12, 13, 14, 15, 16] from measured spectra. However, in order to make such recon-
struction, one has usually to assume certain correlation between the parametersB, IS,
andQS. To the best of the authors knowledge, there is no code enabling one to get, e.g.,
the distributions ofB andIS independently of each other. Our earlier paper [6] showed
that this can be done when the analysis is carried out by meansof the Maximum Entropy
Method. The first successful attempt to use this method for a single parameter distribu-
tion was published by Brand and Le Caër [17]. Dou et al. [18] used Bayesian inference
theory to obtain the distribution of one parameterB assuming however a linear coupling
of two other parameters (IS andQS) to B.

2. MAXIMUM ENTROPY METHOD

Assume that the whole 3-dimensional space of parameters wasdivided into pixels and
the valueρj denotes the probability of having the values of these parameters correspond-
ing to this particular pixel. Because the line intensities are linear in the probabilities, the
intensitiesWk measured (with uncertaintiesσk) atkth velocity channel will be described
theoretically by:

Tk =

Npix
∑

j=1

rkjρj , where k = 1,2, . . . ,N . (2)

The transformation matrix{rkj} can easily be evaluated (see references given in the
Introduction). We consider the distributionρj = ρB,QS,IS, which means that the indexj
denotes a collection of the three indices corresponding to the variablesB, QS andIS,
respectively. In other words three-dimensional matrix{ρj} of the probability distribution
is written in eqs. (2) and (4) as a single row.

As usual one is maximizing the Lagrangian [19]:

L = αS−
1

2
χ2 (3)



under an additional constraint of normalization of the distribution{ρj}. In eq. (3)

S = −

Npix
∑

j=1

ρj ln(ρj/ρ0j) (4)

and

χ2 =
∑

k

1

σk2
(Wk −Tk)2 . (5)

In eq. (4),ρ0j denotes a prior (a model). The final equations to solve are of usual type

ρj =
ρ0j exp

(

− 1

2α

∂χ2

∂ρj

)

∑Npix

j′=1
ρ0j′ exp

(

− 1

2α

∂χ2

∂ρj′

) , j = 1,2, . . . ,Npix . (6)

During calculations special care is taken to ensure the equality of the sum of measured
intensitiesWk and the sum of intensitiesTk as calculated from eq. (2) for the distribution
{ρj}.

3. AMBIGUITY PROBLEM IN THE CASE OF PARAMAGNETIC
SPECTRA

Initially, the first goal of the analysis was to study the distribution of (QS,IS) parame-
ters in UFe5Sn, for which the Mössbauer spectrum was measured in paramagnetic phase
[20], in which B = 0. In the experiment [19] well defined two quadrupole doublets
were found, and from the conventional approach to the Mössbauer spectra analysis the
situation looked simple and clear. The intensity ratio, appr. 4:1, of the doublets was
as expected on the basis of the iron distribution among different crystallographic sites.
However, the distribution obtained by MEM was unexpectedlymuch richer, so we de-
cided to study the situation of simulated two doublets:(QS,IS) = (0.287,−0.064) and
(0.235,0.115) (all parameters are expressed in mm/s and are close to the ones found
in [19]). Fig. 1A presents the simulated spectrum consisting of these doublets. The
Maximum Entropy Method with the uniform prior gave again very rich landscape of
P (QS,IS), see Fig. 1B, almost identical with the one obtained from theexperimental
spectrum. It could thus seem at first that MEM produces simplywrong answers. This,
however is not the case. In fact, one can easily calculate that the landscape seen in Fig.
1B shows all possible combinations of doublets and singletswhich could explain the
measured spectrum, and satisfy the condition of the maximumof the entropyS. The
symmetry with respect to the change of the sign ofQS derives simply from the absorp-
tion cross section.

Obviously, the aforementioned solution consisting of the two doublets only is hidden
among other possibilities considered by MEM. In order to getunique solution within the
framework of MEM one thus has either to know some physical constraints or try some
tricks. In the particular case considered by us we see that the first doublet is seen in Fig.
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FIGURE 1. Simulated Mössbauer spectrum close to the experimentally observed for UFe5Sn at room
temperature [19]. (A) simulated (points) and reconstructed (solid line) spectrum; (B) reconstruction using
uniform prior; (C) the spectrum corresponding to the strongest peak (solid line) and the difference
spectrum (dashed line); (D) reconstruction from the difference spectrum.

1B with the highest intensity, i.e. it is found to be most likely. Therefore one can use it for
calculating the Mössbauer spectrum which would result for this doublet only, and find
its intensity so to get the best agreement with the measured spectrum in the sense of the
least-square method. Next this partial spectrum can be subtracted from the total one, so
the difference spectrum shown in Fig. 1C is obtained. There is a small narrow negative
dip in the difference spectrum which shows that the line position or/and shape was not
fitted precisely. This however, may well be due to the grid used and does not affect the
final result. The MEM analysis of the difference spectrum leaves no doubts that in the
total spectrum there is no more than another doublet, see Fig. 1D, in full agreement with
what would be obtained from conventional analysis of the Mössbauer data. What we
see in the Fig. 1D is equivalence of the doublet to two Lorentzian lines atQS = 0, and
symmetric solution with respect to theQS = 0 axis. One can also note small noise in
the reconstructed spectrum at the border of the range in which the reconstruction took
place. This may arise from the uncertainties in the difference spectrum used for analysis
and will have no physical meaning anyway.

The ambiguity problem is well-known and, as shown e.g. in ref. [13], when there is
more than a single distribution of hyperfine field parametersin the paramagnetic phase,



the infinite number of distributions can be produced, all of which will be in perfect
agreement with the measured Mössbauer spectrum. The Maximum Entropy Method
is just giving its natural constraint which helps to find the most likely distribution.
However, on the example presented above one can see that in addition to the MEM
constraint which selects mathematically plausible result, one has to consider physical
implications of the obtained distributions and seek eventually for the distributions with
least number of features.
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FIGURE 2. Distributions obtained with the uniform prior: (A) the marginalP (B,QS); (B) the marginal
P (B,IS).

4. THREE-DIMENSIONAL PROBABILITY DISTRIBUTIONS

The feasibility of MEM in the case of 3-dimensional distribution was checked on the
following simulated distribution:

P (B,QS,IS) = exp

(

−
(B−20)2

4
−

(QS−0.3)2

0.01
−

(IS−0.2)2

0.01

)

+0.5 exp

(

−
(B−15)2

4
−

(QS−0.1)2

0.01
−

(IS +0.2)2

0.01

)

+0.25 exp

(

−
(B−10)2

4
−

(QS +0.1)2

0.01
−

IS2

0.01

)

. (7)

Here B is expressed in Tesla, whileQS and IS in mm/s. Normalization constant is
neglected as irrelevant parameter for our purpose. The calculated Mössbauer spectrum
corresponding to this distribution is shown by points in Fig. 3A (the remaining content
of Fig. 3 will be discussed later on). We find that the simulated distribution (7) is recon-
structed perfectly if this distribution is used as a prior, so the MEM itself does not pro-
duce any substantial noise. On the other hand, although the Mössbauer spectrum is still
reproduced very well, the reconstruction is rather poor if uniform prior is used. There-
fore various non-uniform priors have been tried. Such priors are easily guessed if one
has some experience with the Mössbauer spectra. We also noted that even in the case of
poor reconstruction, the marginal probabilities [e.g.,P (B,QS) =

∫

P (B,QS,IS)dIS]



are reproduced very well, and show peaks atB = 10,15 and 20, so the marginalP (B)
can always be used as a prior. In addition, even from the results obtained with uniform
prior, see Fig. 2, one can postulate appearance of the strongest peak atB = 20, QS = 0.3
andIS = 0.2, and thus use the following prior

P (B,QS,IS) = exp

(

−
(B−20)2

4
−

(QS−0.3)2

0.01
−

(IS−0.2)2

0.01

)

+0.5

[

exp

(

−
(B−15)2

4

)

+exp

(

−
(B−10)2

4

)]

exp

(

−
QS2

0.02
−

IS2

0.02

)

. (8)
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FIGURE 3. (A) The pseudo-experimental spectrum and the fitted one (solid line) with the prior as given
in eq. (8). The spectrum corresponding to this prior is shownby dashed line; (B) marginalP (B,QS)
reconstructed from the prior (8); (c) same forP (B,IS); (d) same forP (QS,IS). All probabilities given
in arbitrary units.

Note that although inP (B) the intensities of two peaks found atB = 15 andB =
10 were apparently different, we used in (8) the same amplitudefor both of them,
while leaving rather large uncertainty concerning respective values ofQS andIS. The
spectrum corresponding to this prior (note that it is quite different from the “measured”
one) and the results of the final reconstruction presented in3-dimensional graphs are
shown in Figs. 3A–D. There is no doubt that in spite of some small artefacts the
reconstruction was successful. The similarity of Figs. 3C and 3D is not strange as the
formula (7) indicates linear correlation ofB andQS. However, this correlation had to
be found by MEM!



5. CONCLUSIONS

It was shown that the reconstruction of the probability distribution of the hyperfine
parameters from Mössbauer spectrum is possible, although one has to be very careful
with coming to conclusions. We have shown that the Maximum Entropy Method gives
the most likely distribution which, however, can have little to do with the true one.
Therefore some extra work is needed for interpreting the spectrum. This does not show
any weakness of the MEM method. Just the opposite is true. Oneshould remember
that all conventional methods of analysis rely on assumptions of e.g. the number of
subspectra and possible correlations between hyperfine parameters. Therefore, a true
advantage of MEM consists in abandoning the latter assumptions. As we showed, the
MEM can successfully be applied to reconstruction of even 3-dimensional distributions
from the one-dimensional Mössbauer spectra, provided, however, that a proper non-
uniform prior is used.
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