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Abstract.
In this work we re-examine some classical bounds for nonnegative integer-valued random vari-

ables by means of information theoretic or maxentropic techniques using fractional moments as
constraints. The new bound is able to capture optimally all the information content provided by the
sequence of given moments or by the moment generating function, summarized by few fractional
moments. The bound improvement is not trivial.
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SOME KNOWN BOUNDS FOR DISCRETE PROBABILITY
DISTRIBUTIONS

Consider a non negative integer-valued r.v.X with distribution functionF(x). We often
need to compute the survival probability

P(X ≥ t) = 1−F(t) =
∫ ∞

t
dF(x) (1)

or F(x) itself or expected values. For many cases of interest (1) is not explicitly
given in closed form, so that we must be satisfied with providing upper bounds of (1).
Classically, three candidates are most used as an upper bound of (1):

1) the well known Chernoff boundC(t) ([2]) defined by

C(t) = inf
s≥0

M(s)e−st (2)

with

M(s) =
∫ ∞

0
esxdF(x), s∈ Iδ, δ > 0

whereIδ is some complete neighborhood of the origin so thatM(s) is the usual
moment generating function (mgf). For reasons which will be clear later, we intro-
duce the functionM∗(s) = M(s), s∈ (−∞,0]: note thatM∗(s) is not defined on a
complete neighborhood of the origin and it has not be confused with thefgm.

2) the moment bound ([15]),



Mmom(t) = inf
n≥0

E(Xn)
tn (3)

3) the factorial moment bound

F (t) = inf
0≤n≤t

E (X(X−1) · · ·(X −n))
t(t −1) · · ·(t −n)

(4)

These three bounds come from the Markov inequality. [15] showed thatMmom(t) is better
thanC(t), i.e. P(X ≥ t) < Mmom(t) < C(t). [13] showed thatF (t) is better thanC(t),
i.e. P(X ≥ t) < F (t) < C(t).

Closely related to survival probability estimation is the following:

4) a classical bound ([1]) states that, ifF(x) andG(x) are two distribution functions
sharing the first 2Q momentsµ j =

∫ ∞
0 xjdF(x) =

∫ ∞
0 xjdG(x), j = 1,2, . . .,2Q then

| [1−F(x)]− [1−G(x)] |=| F(x)−G(x) |≤ ωQ(x) (5)

where the window functionωQ(x) =
[
V′

Q(x)∆−1
Q VQ(x)

]−1
with

∆Q =




µ0 · · · µQ
...

...
...

µQ · · · µ2Q




the Hankel matrix andVQ(x) = [1,x, ...,xQ]′ is the so-called power vector.

[11] showed that (5) gives relatively sharp information about the tail of the distribution
but, not too much else as consequence of the structure ofωQ(x) which goes to zero at
the ratex−2Q asx→ ∞.

The above classical bounds concerning the distribution functionF(x) are given in
terms of integer moments or in terms of moment generating function (mgf); hence, they
exploit only partially the information contained in the data and for this reason these
bounds are not very tight. Nevertheless, they are easily calculated using that data.

Fractional moments given byE(Xα ), α ∈ R+ are definitely better than integer mo-
ments for recovering a probability distribution and related quantities via Maximum En-
tropy setup for several reasons; in particular, there is a result due to Lin ([10]) which
states the characterization of a distribution through its fractional moments

Theorem 1 (Lin (1992)) A positive r.v. X is uniquely characterized by an infinite se-
quence of positive fractional moments{E(Xα j )}∞

j=1 with distinct exponentsα j ∈ (0,α ∗),
E(Xα ∗

) < ∞, for someα ∗ > 0.

and the Maximum Entropypmf PM recovered involving fractional moments converges
in entropy to the truepmf P([14]). This implies the convergence in directed divergence
of PM to P which implies convergence inL1 norm ofPM to P ([9]) and, hence, conver-
gence in distribution of bounded functions ofX evaluated onPM to the true value. This
last result means that if we are interested in approximating some characteristic constants



of a discrete distribution (think to expected values, probabilities or other) the equivalent
counterparts evaluated onPM are as close as we like to the true values and the closeness
depends on the (increasing) value ofM.

But, as a counterbalance, they are not always easy to evaluate. Traditionally themgf
of a random variableX is used to generate positive integer moments ofX. But it is
clear that themgfalso contains a wealth of knowledge about arbitrary real moments and
hence, on fractional moments. Taking this into account, to obtain fractional moments,
[5] exploit some properties of themgf and its fractional derivatives; [8], in addition to
mgf, considers the knowledge of a set of integer moments which can be obtained by
proper integration of themgfon a contourC of the complex plane.
Several scenarios will be analyzed, depending on the available information. This latter
is assumed given by a finite or infinite sequence of moments and/or by themgf.

The caseX ≥ 0 with determinate moment problem non admittingmgf

Let X = {x0,x1, . . .} be a discrete r.v. with probability mass function (pmf) P =
{p0, p1, . . .} whose integer moments (im)µ j = ∑∞

k=0xj
kpk, j = 1,2, . . ., are assigned.

Uniquely in terms of moments the non existence ofmgf, given in this case byM(s) =
∑∞

j=0esxj pj, entails

lim sup
j→∞

(
µ j

j!

) 1
j

= +∞.

while moment problem determinacy entails ([12])

lim
n→∞

ρ(0)
n ·ρ(1)

n = 0

where

ρ(0)
n =

∣∣∣∣∣∣

µ0 . . . µn
. . . . . . . . .
µn . . . µ2n

∣∣∣∣∣∣
∣∣∣∣∣∣

µ2 . . . µn+1
. . . . . . . . .

µn+1 . . . µ2n

∣∣∣∣∣∣

andρ(1)
n =

∣∣∣∣∣∣

µ1 . . . µn+1
. . . . . . . . .

µn+1 . . . µ2n+1

∣∣∣∣∣∣
∣∣∣∣∣∣

µ3 . . . µn+2
. . . . . . . . .

µn+2 . . . µ2n+1

∣∣∣∣∣∣

.

Next ME approximantP(im)
M = {p(im)

0 , p(im)
1 , . . .} ([7]) of P, constrained byµ j ,

j = 1, ...,M is considered. Here

p(im)
i = exp

(
−

M

∑
j=0

λ j x
j
i

)

with λ j , j = 0,1, . . .,M, λM ≥ 0 Lagrange multipliers. The constraints{µ j}M
j=0 deter-

mine uniquelyλ j and henceP(im)
M . If the underlying moment problem is determinate,



[16] proved thatP(im)
M converges in entropy toP, that is limM→∞ H[P(im)

M ] = H[P],

whereH[P(im)
M ] andH[P] denote the Shannon-entropy ofP(im)

M andP respectively, with

H[P] = −∑∞
j=0 pj ln pj and similarlyH[P(im)

M ].
Entropy convergence entails convergence in variation and then in distribution. Indeed,

keeping in mind thatP(im)
M andP have same firstM moments, combining the following

well known relationship

H[P(im)
M ]−H[P] =

∞

∑
j=0

pj ln
pj

p(im)
j

.

and the inequality [4]

∞

∑
j=0

pj ln
pj

p(im)
j

≥ 1
2 ln2

(
∞

∑
j=0

| pj − p(im)
j |

)2

we have

| F(im)
M (x)−F(x) | =| ∑

j≤x

(
p(im)

j − pj

)
|

≤ ∑
j≤x

| p(im)
j − pj |

≤
∞

∑
j=0

| p(im)
j − pj |

≤
√

2 ln2
(

H[P(im)
M ]−H[P]

)

(6)

The righthand term is the required uniform bound to be compared with (5). In (6)

H[P(im)
M ] may be calculated, while, in general,H[P] may be efficiently estimated from

the sequenceH[P(im)
j ], j = 1,2, . . .,M through a proper convergence accelerating pro-

cess (Aitken∆2-method, for instance)).

The caseX ≥ 0 where both{µ j}K
j=1 and M∗(s) are known

The knowledge of{µ j}K
j=1 andM∗(s), s≤ 0 allows us to obtain fractional moments

E(Xα ) = ∑∞
j=1 xα

j pj , 0 < α < K, through the following formula due to Klar ([8])

E(Xr+N−1) = (−1)N ∏N−1
j=0 (r + j)

Γ(1− r)

∫ ∞

0
s−r−N

[
M(−s)−

N−1

∑
j=0

(−1) j µ jsj

j!

]
ds (7)



with r ∈ (0,1), N = 1,2, ...,K andα = r +N−1∈ (0,N). Now,

a) for N = 1 the right hand side of (7) involves onlyM∗(s): this is enough to obtain
infinite fractional moments with exponents in(0,1) and, via Lin’s theorem, they
are able to characterize the distribution. In this case, (7) reduces to that given by
[5];

b) for N > 1 the right hand side of (7) involves bothM∗(s) and a set ofN integer
moments; infinite fractional moments with exponents in(0,N) may be obtained
from (7) and, via Lin’s theorem, they are able to characterize the distribution again.
In this sense, (7) may be also seen as a generalization of the Cressie and Borkent
result.

It is important to note that the two sides of (7) are equivalent in information about the
distribution; but, the fractional moments are able to condense more effectively the same
information contained inM∗(s) and in the set ofN integer moments.

Next the ME approximantP(fm)
M = {p(fm)

0 , p(fm)
1 , . . .} of P ([7]), constrained by

{E(Xα )}M
j=0 , α0 = 0,0 < α j < K, K arbitrarily fixed withE(XK) < +∞ according to

what Lin’s characterization theorem ([10]) says, is considered where

p(fm)
i = exp

(
−

M

∑
j=0

λ jx
α j
i

)
(8)

with λ j , j = 0,1, . . .,M, λM ≥ 0 Lagrange multipliers. [14] proved that, if

α j = ∆α j, j = 0,1, . . .,M, ∆α =
K
M

whereE(XK) < +∞, thenP(fm)
M converges in entropy toP, that is

lim
M→∞

H[P(fm)
M ] = H[ f ] (9)

Such a result, joined withH[P(fm)
M ]≥H[ f ],∀M, allowed the useful choice of{α j}M

j=1
with 0 < α j ≤ K according to the following criterion

{α j}M
j=1 : H[P(fm)

M ] = minimum. (10)

For the convergence in entropy, only 0< α j ≤ K, ∀ j is required, no matter regard-

ing the value ofK; of course, smallerK slower the convergence in entropy ofP(fm)
M

to P. Unlike from the integer moments setup where the optimal moment sequence
{µ1,µ2, . . .,µM+1} is obtained from{µ1,µ2, . . .,µM} just addingµM+1, the two op-

timal sequences{α (M)
1 ,α (M)

2 , . . .,α (M)
M } and{α (M+1)

1 ,α (M+1)
2 , . . .,α (M+1)

M+1 }, satisfying
(10) with M andM + 1 respectively, are completely disconnected in the fractional mo-

ments setup. In numerical experiments the correspondingME pmf P(fm)
M has entropy

H[P(fm)
M ] ' H[P] starting from moderate values ofM. From (10) the convergence of



H[P(fm)
M ] to H[P], for increasingM, is evidently faster than the convergence ofH[P(im)

M ]
to H[P], if the underlying moment problem is determinate, i.e.

H[P(fm)
M ]−H[P] < H[P(im)

M ]−H[P], ∀M. (11)

The chain of inequalities similar to (6), provides us with

| F(fm)
M (x)−F(x) |≤

√
2 ln2

(
H[P(fm)

M ]−H[P]
)
. (12)

The bound (12) is sharper than (6). Numerical evidence or a convergence accelerating
process, proves that

H[P(fm)
M ] ' H[P] (13)

even for moderate values ofM. By combining (6) and (13) we have the testable uniform
bound

| F(im)
M (x)−F(x) |≤

√
2 ln2

(
H[P(im)

M ]−H[P(fm)
M ]

)
(14)

i.e. the upper bound is obtained through two different procedures, having different and
comparable accuracy. Probably the bound (14) is sharper than (5) in the central part of
the distribution and, vice versa, (5) is much more sharp than (14) (as well (12)) in the
tail. Combining (5) and (14) (or (12)) we have a sharper upper bound, valid forx ≥ 0
andM which guarantees (13)

| F(im)
2M (x)−F(x) |≤ min{ωQ(x),

√
2 ln2

(
H[P(im)

2M ]−H[P(fm)
2M ]

)
} (15)

| F(fm)
2M (x)−F(x) |≤ min{ωQ(x),

√
2 ln2

(
H[P(fm)

2M ]−Hacc[P]
)
} (16)

whereHacc[P] is obtained from{H[P(fm)
j ]}2M

j=1 through a convergence accelerating
process, so thatH[P] ' Hacc[P] may be assumed. Here the maximum value allowed of
Q stems from the number of given moments or from numerical stability requirements.

The caseX ≥ 0 with {µ j}∞
j=1 assigned and existingmgf

Let us now assume that we know{µ j}∞
j=1, and we also assume that

lim sup
j→∞

(
µ j

j!

) 1
j

=
1
R

, finite.

ThenM(t) = ∑∞
j=0

µ j t j

j! , −R≤ t < R, holds. Since our first goal is to calculateE(Xα )
from {µ j}∞

j=1 through (7), it remains to determinateM(t) on (−∞,−R]. The following



procedure is adopted. The underlyingmgf M(t) is such thatM(−t) is a completely
monotonic function on(−R,+∞), i.e. (−1) jM( j)(−t) > 0, ∀t > −R, j = 0,1, . . .; then
M(−t) may be uniformly approximated ont ∈ [0,∞) by the following exponential sum
([6])

M(−t) 'Yn(−t) =
n

∑
j=1

aj e−λ j t (17)

having parameters satisfying the constraints 0≤ λ1 < λ2 < ...< λn, ai ≥ 0, i = 1, ...,n.
Now, if Yn(−t) interpolatesM(−t) at the 2n equally spaced pointst j ∈ [0,R], j =
1, ...,2n, then Prony’s method may be invoked to calculate the parametersaj ’s andλ j ’s.
BeingM(−t) a completely monotonic function withM(−∞) = 0 then Prony’s method
guaranteesaj ≥ 0, ∀ j and 0≤ λ1 < λ2 < · · ·< λn ([6], Thm. 3) so thatYn(−t) turns to
be completely monotonic function too and asymptotically decreasing to zero. Then for
practical purposes,M(−t) ' Yn(−t), t ≥ R. Finally, by replacingM(−t) with Yn(−t),
t ≥ R, fractional momentsE(Xα ) are obtained by a slightly modification of (7) (Klar’s
formula)

E(Xr+N−1) = (−1)N
N−1

∏
j=0

(r + j)
Γ(1− r)

(∫ R

0
s−r−N

[
M(−s)−

N−1

∑
j=0

(−1) j µ jsj

j!

]
ds+

+
∫ ∞

R
s−r−N

[
Yn(−s)−

N−1

∑
j=0

(−1) j µ jsj

j!

]
ds

) (18)

Next according toME procedure the approximantpmf P(fm)
M = {p(fm)

0 , p(fm)
1 , . . .}

constrained by{E(Xα j}M
j=0, α0 = 0 is obtained ([7]) withp(fm)

i given by (8). The choice
of {α j}M

j=1 is similar to the one adopted in (9) as well as the entropy convergence.

The caseX ≥ 0 with M(t), t ∈ (−∞,R) known, Rfinite or infinite

This case is an extension of the previously analyzed case. By repeated differentiation
of M(t) by hand or through a symbolic manipulation language, such as Mathematica or
Maple, the fractional calculus providesE(Xα ) ([5]).

E(Xα ) =
1

Γ(n−α )

∫ 0

−∞
(−z)n−α−1 dn

dznM(z)dz, n∈ N, α < n.

where only real values ofM(t) only are needed. InvokingME procedure with con-
straints{E(Xα j )}M

j=1, similar results as in previous section are obtained.

The knowledge ofM(t), t ∈ C allows us to calculate{µ j}M
j=1 and thenE(Xα ) by (7),

through an efficient procedure, as suggested by Choudhury ([3]).
As consequence, fractional momentsE(Xα ), α > 0, may be efficiently calculated

through (7).



REFERENCES

1. N.I. Akhieser, The classical moment problem and some related questions in analysis. Hafner, New
York (1965).

2. H. Chernoff, A measure of asymptotic efficiency for tests of hypothesis based on the sum of observa-
tions. Annals of Mathematical Statistics,23, 493-507 (1952).

3. G.L. Choudhury, D.M. Lucantoni, Numerical computation of the moments of a probability distribution
from its transform. Operations Research,44, n.2, 368-381 (1996).

4. T.M. Cover, J.A. Thomas, Elements of Information Theory. John Wiley & Sons, Inc., New York
(1991).

5. N. Cressie, M. Borkent, The moment generating function has its moments. Journal of Statistical
Planning and Inference,13, 337-344 (1986).

6. D.W. Kammler, Prony’s method for completely monotonic functions. J. of Math. Analysis and Appli-
cations,57, 560-570 (1977).

7. H.K. Kesavan, J.N. Kapur, Entropy Optimization Principles with Applications. Academic Press, New
York (1992).

8. B. Klar, On a test for exponentiality against Laplace order dominance. Statistics,37, n.6, 505-515
(2003).

9. S. Kullback, A lower bound for discrimination information in terms of variation. IEEE Transaction on
Information Theory,IT-13, 126-127 (1967).

10. G.D. Lin, Characterizations of Distributions via moments. Sankhya: The Indian Journal of Statistics,
54, Series A, 128-132 (1992).

11. B.G. Lindsay, P. Basak, Moments determine the tail of a distribution (but not much else). The
American Statistician,54, n.4, 248-251 (2000).

12. E.P. Merkers, M. Wetzel, A geometric characterization of indeterminate moment sequences. Pacific
Journal of Mathematics,65, n. 2, 409-419 (1976).

13. P. Naveau, Comparison between the Chernoff and factorial moment bounds for discrete random
variables. The American Statistician,51, n.1, 40-41 (1997).

14. P.L. Novi Inverardi, A. Tagliani, Maximum entropy density estimation from fractional moments.
Communications in Statistics - Theory and Methods,32, n.2, 15-32 (2003).

15. T.K. Philips, R. Nelson, The Moment Bound is Tighter That Chernoff’s Bound for Positive Tail
Probabilities. The American Statistician,49, n.2, 175-178 (1995).

16. A. Tagliani, Inverse Z transform and moment problem. Probability in the Engineering and Informa-
tional Sciences,14, 393-404 (2000).


