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∗Lab. de Sistemas Complejos, Fac. de Ingeniería - UBA,
Av. Paseo Colón 850 (1063), 4to. piso, Ala sur, Buenos Aires, Argentina.

†Istituto di Scienza e Tecnologie dell’Informazione - CNR,
Via Moruzzi 1, I-56124 Pisa, Italy.

∗∗Comisión de Inv. Científicas de la Prov. de Buenos Aires,
Av. Paseo Colón 751 (1063), Buenos Aires, Argentina.

Abstract. We develop a new technique for blind separation of potentially non independent com-
ponents in astrophysical images. Given a set of linearly mixed images, corresponding to different
measurement channels, we estimate the original electromagnetic radiation sources in a blind fash-
ion. Specifically, we investigate the separation of cosmic microwave background (CMB), thermal
dust and galactic synchrotron emissions without imposing any assumption on the mixing matrix.
In our approach, we use the Gaussian and non-Gaussian features of astrophysical sources and we
assume that CMB-dust and CMB-synchrotron are uncorrelated pairs while dust and synchrotron
are correlated which is in agreement with theory. These assumptions allow us to develop an al-
gorithm which associates the Minimum Entropy solutions with the non-Gaussian sources (thermal
dust and galactic synchrotron emissions) and the Maximum Entropy solution as the only Gaussian
source which is the CMB. This new method is more appropriate than ICA algorithms because in-
dependence between sources is not imposed which is a more realistic situation. We investigate two
specific measures associated with entropy: Gaussianity Measure (GM) and Shannon Entropy (SE)
and we compare them. Finally, we present a complete set of examples of separation using these two
measures validating our approach and showing that it performs better than FastICA algorithm. The
experimental results presented here were performed on an image database that simulates the mea-
surements expected from the instruments that will operate onboard ESA’s Planck Surveyor Satellite
to measure the CMB anisotropies all over the celestial sphere.
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INTRODUCTION

The study of Blind Source Separation (BSS) techniques is a very active area of research
since they have proved to be useful for solving a broad set of problems in signal
processing such as: speech processing [1], subpixel unmixing in hyperspectral images
[2, 3, 4, 5], astrophysical signal processing [6, 7, 8, 9], and others. The purpose of a BSS
algorithm is to provide a good estimate of unknown source signals by using, as the only
available information, their linearly mixed versions.



Early approaches to BSS were done under the strong assumption of independence of
the sources reaching to a wide portfolio of algorithms such as FastICA, JADE, and others
(see the book [14] for a complete review), which are usually known as Independent
Component Analysis (ICA) algorithms.

Dependent Component Analysis (DCA) has recently arisen as a natural extension of
ICA [15, 16], i. e., by considering the case where sources are allowed to be dependent
(and possibly correlated). Few algorithms for DCA were investigated in the literature, for
example, in [15], the separation is obtained by using the temporal correlation of signals.
In [2] and [16] it was shown that minimum entropy criteria remains an useful tool even
for dependent sources (which are potentially strongly correlated) while the minimum MI
criterion, used by most of ICA algorithms, fails in the separation of dependent sources.

In this paper, we provide a novel approach to the blind separation of astrophysical
images which exhibit significant levels of correlation among some of the sources. In
particular, we work with synthetic simulations of astrophysical images constructed from
radiation maps that will be measured by a satellite in the Planck Surveyor Satellite mis-
sion1. Images will be acquired in several channels and each measure can be considered
as a linear mixture of several sources of radiations such as the Cosmic Microwave Back-
ground (CMB), the synchrotron (SYN) and the galactic dust (DUST) (see [7] for de-
tails). In [6, 7], this problem was approached by using ICA methods, but the results are
adversely affected by the non realistic assumption of source independence [8].

DEPENDENT COMPONENT ANALYSIS

Given a set of P input signals s0, s1,.., sP−1 (potentially non independent) with zero-
mean (E(si) = 0) and unit-variance (E (s2

i ) = 1), a set of M linear mixtures (outputs)
x0, x1,.., xM−1 are determined by xi(t) =

∑P−1
j=0 aijsj(t)+ni(t), where the coefficients

aij define the linear mixing process and n0, n1,.., nM−1 are the sensor noise variables. A
matrix representation of this linear process is given, as usual, by:

x(t) = As(t)+n(t) (1)

where s(t) = [s0 s1 ... sP−1]
T , x(t) = [x0 x1 ... xM−1]

T and n(t) = [n0 n1 ... nM−1]
Tare

P ×1, M ×1 and M ×1 time dependent column vectors respectively, and A is a M ×P
fixed matrix with linear independent rows and is called the mixing matrix. We will
restrict our present work to the overdetermined case, i.e. , with M ≥ P .

Notice that, in the case of having low level noise and knowing the mixing matrix A,
the source estimates can be obtained through a linear combination of the mixtures, i. e.,

ŝ(t) = A†x(t) (2)

where A† is the P ×M Moore-Penrose matrix inverse (or pseudo inverse). But, as we
do not have any information about matrix A, our DCA approach uses a parameterization
of this pseudo inverse A† which produces source estimates having unit-variance. It is

1 Planck Mission website: www.rssd.esa.int/Planck



well known that, in the case of having independent sources, the separation is obtained
by finding the P most important local minima of the source entropies [10, 13]. This is a
natural consequence of the Central Limit Theorem and it can be formally demonstrated
by using the entropy power inequality to the case of the variance constrained to one,
and using, as a contrast function the sum of the source estimates entropies (see [10] for
a mathematical proof). Moreover, the entropy power inequality can be generalized for
certain types of dependent variables as was discovered by S. Takano [11] and studied
by O. Johnson [12] which allows us to use the Minimum Entropy criterion as a valid
method for the dependent case also.

Following this criterion, we select the appropriate matrix A† which minimizes the
entropy of the non-Gaussian source estimates. In this paper, we concentrate on two
different entropic measures which are: the Shannon Entropy (SE) and the Gaussianity
Measure (GM) defined for a generic zero-mean and unit-variance random variable y as
follows:

HSE(y) = −
∫

py(y) log(py(y))dy; HGM (y) = −
∫

[py(y)−Φ(y)]2 dy

where Φ(y) = 1√
2π

exp(−1
2
y2) is the Gaussian pdf and py(y) is the pdf corresponding to

the random variable y. Notice that our measure of the Gaussianity is related to the L2-
distance of probability density functions (pdfs). For estimating these entropic measures
from a set of N samples: y(0), y(1),.., y(N−1), we use a non-parametric pdf estimation
technique, namely the Parzen windows [17, 18].

THE MINIMAX ENTROPY METHOD FOR ASTROPHYSICAL
IMAGES

In this section, we describe our DCA approach for the particular case of astrophysical
signals where some a priori knowledge about the data can be taken into account.

ASSUMPTIONS: In the Planck Surveyor Satellite mission, the onboard sensors will
be collecting images from the space at different center frequencies [7]. As was made in
[8], we consider a simplified model of equation (1) with M = 4 mixtures (x0, x1, x2 and
x3) corresponding to measures at the frequencies: 100GHz, 70GHz, 44GHz and 30GHz;
and P = 3 sources (s0, s1 and s2) corresponding to Cosmic Microwave Background
(CMB), galactic Synchrotron (SYN) and galactic dust (DUST) images. The following
specific assumptions are considered:

A1: CMB images are Gaussian while SYN and DUST images are non-Gaussian ones.
A2: In theory, CMB-SYN and CMB-DUST are uncorrelated pairs (E[s0s1] =

E[s0s2] = 0)
A3: Low noise case is considered, it means, the variance of the additive noise in

equation (1) is low. In this case, a good estimate of the mixing matrix A is enough in
order to obtain acceptable estimates of sources by using the equation (2). As we show in
this work, we qualitatively analyze the robustness to noise of our method.

The assumption A2, which was used before by Bedini et al in [8] for obtaining the
separation, is not strictly required by our method but can be used for improving the
estimation of CMB as we explain in this paper.



OUR METHOD: As it is usually done in several ICA techniques, a first step in our
algorithm is to obtain uncorrelated mixtures. This is known as a Whitening step and a
way of do it is by applying the second order statistics method known by Karhunen-Loeve
Transformation (KLT), i. e., by obtaining a new set of uncorrelated mixtures x̃ = [x̃0 x̃1

x̃2] through a linear transformation2. Since the whitened mixtures x̃0, x̃1 and x̃2 are
uncorrelated ones (E[x̃0x̃1] = E[x̃0x̃2] = E[x̃1x̃2] = 0), the way of restricting its linear
combination to have unit-variance is to use a set of coefficients lying in the unit norm
sphere. In other words, we are allowed to use spheric coordinates which reduces the
space of search to have two dimensions (θ0, θ1). Accordingly, our source estimates can
be obtained through the following equation which depends only on two parameters θ0

and θ1: y(θ0, θ1) = x̃0 cosθ0 + x̃1 sinθ0 cosθ1 + x̃2 sinθ0 sinθ1. Therefore, the following
two steps define the Minimax entropy method:

Minimum Entropy step: Since non-Gaussian sources are related with local minima
of entropy, we seek for the local minima of the entropic measure of y(θ0, θ1) (SE or GM).
The source estimates associated with these local minima correspond to the non-Gaussian
sources (SYN and DUST in our case).

Maximum Entropy step: It is well known that the Gaussian density has the max-
imum entropy for a given variance. Therefore, the source estimate associated with the
maximum of the entropic measure of y(θ0, θ1) (SE or GM), corresponds to the Gaussian
source which is, in our case, the CMB.

Then, the source estimates are obtained through a linear transformation on the
whitened sources:

ŝ = D̃x̃ (3)

where the rows of the 3× 3 matrix D̃ are obtained one by one applying the previous
steps.

Using uncorrelatedness for enhancing CMB estimate

The assumption A2 can be used to estimate the CMB image once SYN and DUST
images were obtained and avoiding the Maximum Entropy step3. Let us assume that
we have already obtained the second (SYN) and third (DUST) rows of the separation
matrix D̃. The matrix D̃ is related to the covariance matrix of sources as follows:
Rŝ̂s = E[ŝŝT ] = D̃D̃T . Since E [ŝ0ŝ1] = E [ŝ0ŝ2] = 0 (by assumption A2), it means that
the first row of matrix D̃ must lie in the subspace which is orthogonal to the second
and third rows and we can calculate it directly by using, for example, the Gram-Schmidt
procedure.

2 Notice that, under the low noise assumption (A3) the resulting dimensionality of the data after the KLT
is 3, i. e., one eigenvalue of the covariance matrix is nearly zero and its associated eigenvector can be
discarded.
3 This is useful since, in our experiments, we have noted that the minima (SYN and DUST) are always
spiky and easy to detect while the local maximum (CMB) is more difficult to be accurately detected.



FIGURE 1. 2D-countour plot of GM and SE versus spheric coordinates (θ0, θ1)

EXPERIMENTAL RESULTS

Noiseless case

We have synthetically generated the four mixtures by using equation (1) with zero-
noise (n = 0) and a selected matrix A according to [6]. We have used images of
256× 256 pixels (65536 samples) for CMB, SYN and DUST which were supplied by
the Italian Planck team (see [7] for a description on the generation of images). In a pre-
processing step, the sources were forced to have zero-mean and unit-variance as it is
usual in BSS applications [13]. In the Figure 2, the original sources (top-left) and the
synthesized mixtures (bottom) are shown.

The actual matrix D̃ and its estimates obtained through our algorithm (using the MG
and SE measures) are:

D̃ =

⎡
⎢⎣ −0.36 0.62 0.70

1.00 −0.05 0.02
0.04 0.85 −0.53

⎤
⎥⎦

D̃MG =

⎡
⎢⎣ −0.29 0.66 0.69

0.90 −0.27 −0.35
−0.07 0.71 −0.70

⎤
⎥⎦ ; D̃SE =

⎡
⎢⎣ −0.28 0.67 0.69

1.0 −0.02 0.02
0.03 0.72 −0.69

⎤
⎥⎦ (4)

In the Figure 1, the corresponding 2D-contour plots for the GM and SE entropic mea-
sures are shown for this particular example. Note that the positions of the minima (SYN
and DUST) and the maximum (CMB) are clearly identified.

We have obtained the corresponding source estimates (ŝ = D̃x̃) using the matrices
in (4) and we have calculated the corresponding Signal To Interference Ratio (SIR)4

4 As usually, SIR is defined for each source estimate ŝ in terms of the error variance as follows: SIR=
−10 log10(var(s− ŝ))



FIGURE 2. Original CMB, SYN and DUST sources (top-left); the four available mixtures (bottom)
and the sources estimates using SE (top-right).

as a measure of the separation performance. The obtained SIR levels are shown in the
TABLE 1 (Patch number 2). In the Figure 2 (top-right), the source estimates obtained
with the SE measure are shown. Note that they are visually identical to the original
sources.

Additionally, we have applied the Minimax Entropy algorithm and the FastICA5

algorithm to a collection of 15 different sets of mixtures corresponding to 15 simulated
patches from the whole sky map. In order to find the local minima of the entropic
measure (GM and SE), we have used an iterative gradient descend algorithm6. The
first row of matrix D̃ was calculated as the unit-norm vector which is orthogonal to the
second and third rows as was explained before. In the TABLE 2, the results are shown,
note that most of the sources were successfully recovered with our method (a SIR level
greater than 8dB can be considered as a successfully recovery). Notice also that SE leads
to better separation results than MG and FastICA (higher SIRs).

Robustness against noise

In this section, the sensitivity to noise of the matrix D̃ estimation technique is ana-
lyzed. The surface of the SE was calculated for different levels of Signal To Noise Ratio
(SNR) (see Figure 3). It was verified that the positions of the local minima are not dra-
matically moved away from their original positions as the SNR is decreased (with SNR
≥ 20dB).

5 The ICALAB software package [19] was used for obtaining the FastICA results.
6 In order to avoid the detection of false local minima we propose to repeat many times the search of a
local minimum and, after every local minimum is detected, we proceed with a deflation technique in order
to eliminate it avoiding to fall in it again in other cycle search. Finally, we should keep only the two most
important minima (the smallest ones).



FIGURE 3. SE 2D-contour plot for different SNR levels: ∞, 40dB and 20dB

CONCLUSIONS

A novel method for the separation of astrophysical images from their linear mixtures is
introduced which is based on the determination of two minima and one maximum of an
entropic measure over the space of the separation parameters (θ0, θ1). We have inves-
tigted two entropic measures, namely, the Gaussianity Measure (GM) and the Shannon
Entropy (SE). While both measures (GM and SE) proved to be useful for obtaining the
separation, better results are obtained by using SE. The presented methods are able to
separate dependent sources, which is a siginificant development over classical ICA tech-
niques which can separate only independent sources. Our technique was demonstrated
to be reasonably robust to low level additive Gaussian noise.
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