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Abstract. Geometric Flow Theory is cross fertilized by diverse elements coming from Pure 
Mathematic and Mathematical Physic, but its foundation is mainly based on Riemannian 
Geometry, as explained by M. Berger in a recent panoramic view of this discipline [4], its 
extension to complex manifolds, the Erich Kähler’s Geometry, vaunted for its unabated vitality 
by J.P. Bourguignon [6], and Minimal Surface Theory [8,9]. This paper would like to initiate 
seminal studies for applying intrinsic geometric flows in the framework of  information 
geometry theory. More specifically, after having introduced Information metric deduced for 
Complex Auto-Regressive (CAR) models from Fisher Matrix (Siegel Metric and Hyper-Abelian 
Metric from Entropic Kähler Potential), we study asymptotic behavior of reflection coefficients 
of CAR models driven by intrinsic Information geometric Kähler-Ricci and Calabi flows. These 
Information geometric flows can be used in different contexts to define distance between CAR 
models interpreted as geodesics of Entropy Manifold. We conclude with potential application of 
Intrinsic Geometric Flow on Gauss Map to transform Manifold of any dimension by mean of 
Generalized Weierstrass Formula introduced by Kenmotsu [8] that can represent arbitrary 
surfaces with non-vanishing mean curvature in terms of the mean curvature function and the 
Gauss map. One of the advantages of the generalized formulae is that they allow to construct a 
new class of deformations of surfaces by use of Intrinsic Geometric Flow on Gauss Map. We 
conclude with the Heat equation interpretation in the framework of Information Geometry.  

Keywords: Chentsov Information Geometry, Siegel Metric, Hyper-Abelian Metric, Entropic 
Kähler Potential, Intrinsic Geometric Flow, Kähler-Ricci Flow, Calabi Flow, Gauss map,  
PACS: Geometric Flow Theory. 

SIEGEL METRIC FOR COMPLEX AUTOREGRESSIVE MODEL 

In Chentsov Information geometry theory, we consider families of parametric density 
functions { }Θ∈=Θ θθ :)/(.pG  with [ ]Tnθθ L1=Θ , from which we can define 
a Riemannian Manifold Structure by meam of Fisher Information matrix  : 
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We demonstrate easily that this Fisher metric is equivalent to the Siegel metric, 
introduced by Siegel in the 60’s in the framework of Symplectic Geometry, in the case 
of Complex Multivariate Gaussian Law (Complex Circular Process): 
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In case of Complex Autoregressive models (CAR model), we can exploit the 
following specific blocks structure of covariance matrices :  
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We can deduce the expression of the Siegel metric previously defined : 
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We can then define a new hyperbolic distance between CAR models as Inferior Bound 

of this metric :  ∑ ∑
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INFORMATION METRIC FROM ERICH KÄHLER GEOMETRY  

   Natural extension of Riemannian Geometry to Complex Manifold has been 
introduced by a seminal paper of Erich Kähler during 30th ‘s of last century. We can 
easily apply this geometric framework for information metric definition. Let a 
complex Manifold  of dimension n, we can associate a Kählerian metric, which 

can be locally defined by its definite positive Riemannian form : 
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given by Erich Kähler, is that Ricci tensor can be expressed by : 
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important geometric flow, in physic & mathematic, is the Kähler-Ricci flow which 

drive the evolution of the metric by : ijij
ij Rg

n
R

t
g 1

+−=
∂

∂
. This flow converges to a 

Kähler-Einstein metric lkji gkR 0= , or equivalently to : 
( )

ji
ji

lk

zz
k

zz
g

∂∂
Φ∂

=
∂∂

∂
−

2

0

2 detlog
, 

known as Monge-Ampère equation : Φ−= 0
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unity : if ) by choice of a new 00 ≠k Φ  potential, or if 00 =k  by local holomorphic 
coordinates selection so that volume )det( lkg  is reduced to 1 (cancellation of Ricci 
tensor is existence condition of this coordinates system). 
   In case of Complex Auto-Regressive (CAR) models, if we choose as Kähler 
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ρ) . Very surprisingly, this case was the first example of 

potential  studied by Erich Kähler in his seminal paper, named by Erich Kähler Hyper-
Abelian case. This choice of Kähler potential as Entropy of CAR model, can be 
justified by remarking that Entropy Hessian along one direction in the tangent plane of 
parametric manifold is a definite positive form that can be considered as a Kählerian 

differential metric: ( )  .).(       
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In case of Complex Autoregressive models, with as previously Whishart density, 
Entropy is given by : 
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If we use the blocks structure of covariance matrix in case of CAR models, we obtain 
the Entropy expressed according to reflection coefficients : 
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The Kähler metric is given by Hessien of Entropy, where Entropy is considered as 
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INFORMATION RICCI & CALABI FLOWS   FOR COMPLEX AR 

Historical Root of Ricci flow can be found in Hilbert work on General Relativity. The 
“Hilbert Action” S is defined as the integral of scalar Curvature R on the Manifold Mn 
: ∫∫ ==

nn MM
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Recently, Ionnis Bakas has established connection between 2 distinct classes of 
geometric deformations, Ricci and Calabi Flows, respectively of 2nd and 4th order. 
Calabi flow preserves the Kähler class and minimize the quadratic curvature for 
extremal metrics.  All geometric flows share some common qualitative features with 
the linear heat flow equation. The Ricci and Calabi flows correspond to intrinsic 
deformations. Let M denote a complex n-dimensional manifold, that admits a Kähler 
metric g with : ∑=
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points of the flow are called extremal metrics. The following functional 
 decreases monotonically along the Calabi Flow and the 

minimum of the functional is given by Schwarz’s inequality : 
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. Bakas [1] has recently proved that there is a 

relation between the Ricci and Calabi Flows on Kähler manifolds of arbitrary 
dimension that manifests by squaring the time evolution operator. The proof is given 
by taking time derivative of the Ricci Flow : 
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Considering the two dimensions case, and a system of conformally flat (Kähler) 
coordinates : . The only non-vanishing components of the Ricci 

curvature tensor is : 
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For the Calabi flow : 
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If we use definition of metric g as previously for CAR models, as derived from 
Entropic Kähler potential in case of a Complex Autoregressive models, then we can 

express Ricci tensor : ( ) 2
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If we apply same approach as previously for CAR models, Calabi flow will act on 
Entropy  defined as Kähler potential : )( pH−
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We then deduce the asymptotic behaviour of PARCOR coefficients submitted to 

Calabi Flow : 
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previsouly, that Calabi flow will drive PARCOR coefficients evolutions to unit circle. 

DEFORMATION BY GAUSS MAP & WEIERSTRASS FORMULA    

Kenmotsu & Konopelchenko have generalized Weierstrass representation for 
surfaces in multidimensional Riemann spaces. Theory of immersion and deformations 
of surfaces has been important part of the classical differential geometry. Various 
methods to describe immersions and different types of deformations have been 
considered. The classical Weierstrass formulae for minimal surfaces immersed in the 
three-dimensional Euclidean space R3 is the best known example of such an approach. 
Only recently, the Weierstrass formulae have been generalized to the case of generic 
surfaces in R3. using the two last years the generalized Weierstrass formulae have 
been used intensively to study both global properties of surfaces in R3 and their 
integrable deformations (e.g. : modified Veselov-Novikov equation). An analog of the 
Weierstrass formulae for surfaces of prescribed (non zero) mean curvature have been 
proposed by Kenmotsu in 1979. The Kenmotsu representation is given by : 
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with the stereographic projection of the Gauss map f
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The most surprising result, as explained by Hoffman [9], is that a general surface in Rn 
is essentially determined by its Gauss map. Such a result was unexpected because this 
result is false for minimal surface. Minimal surfaces in Rn come with a one-parameter 
family of associated surfaces, all having the same Gauss map, but generally distinct. 
Even more is true in R3, where essentially any two minimal surfaces have the same 
Gauss map locally, after a rotation. This representation of surfaces deals basically with 
the Gauss map for generic surface in R3, as developed by Hoffman[9]. One of the 
advantages of the generalized Weierstrass formulae is that they allow to construct a 
new class of deformations of surfaces by use of Geometric Flow on Gauss Map.  

MEANING OF FOURIER HEAT EQUATION   BY 
INFORMATION GEOMETRY 

As we have seen previously, heat equation is the main equation of evolution, 

Kähler flow being interpreted as Heat flow action on differential metric ijg
ij g
t

g
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∂
. 

If we focus on geometric interpretation of heat equation, this analogy could be used to 
make an amother link with Information geometry by mean of Cramer-Rao inequality. 
If we consider the classical definition of Laplace operator in Euclidean space : 
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But also for non euclidean space, by extending classical notion of spatial mean in 
isothermal coordinate : 
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   Generally, we can then write heat equation ( )[ ]xx
t

θθρθθ
−=Δ=

∂
∂ )(ˆ  and 

( )( ++

−−= θθθθρθθ ˆˆ2

dt
d

dt
d ) . If we use Cramer-Rao Inequalitty , then 

. That could be developed by taking trace of the 
expression : 

( ) 1−≥ θθ IR

[ ] ( ) 21222. dtIdtRddE −+ ≥= θρρθθ θ

( )( )[ ] ( )nITrdtddITrE 22. ρθθθ ≥+ . By rewriting last expression 
as ( )[ ] 22dtndIdE ρθθθ ≥+ , we can observe that appears the information metric : 

[ ] 222 dtndsE I ρ≥  

But as we have classically ( ) ( ) ( ) +++
−=⎥⎦

⎤
⎢⎣
⎡ −− θθθθθθθθ ˆ.ˆ.ˆˆ ddddEddE , we can 

extend previous relation to : 

( ) ( ) ( ) ( ) ( )

( ) 2

222
ˆ

22

..

..ˆ..ˆˆ..ˆ

ρ
θ

θ
θ

ρθθθρθθθθθθθθ
θθ

n
dt
dI

dt
d

dtndsdIddtndIddIdE I

=

==→≥+⎥⎦
⎤

⎢⎣
⎡ −−

+

+++

a

For a geodesic curve )(tθθ = , its tangent vector )(t
dt
dθθ =&  is of constant length with 

respect to the metric , thus : Ids 2

,
ρ

θθ
n

dt
d

dt
d

g
ji

ji
ij∑ = . The constant may be chosen to 

be of value 1 when the curve parameter t is chosen to be the arc-length parameter “s”. 

REFERENCES 

1. Ionnis Bakas, “The Algebraic Structure of Geometric Flows in Two Dimensions”, Institute of Physics, SISSA, 
October 2005  

2. F. Barbaresco, « Etude et extension des flots de Ricci, Kähler-Ricci et Calabi dans le cadre du traitement de 
l’image et de la géométrie de l’information », Conf. Gretsi, Louvain la Neuve, Sept. 2005 

3. F. Barbaresco, « Calculus of Variations & Regularized Spectral Estimation », Coll. MAXENT’2000, Gif-sur-
Yvettes, France, Jul. 2000, published by American Institut of Physics. 

4. M. Berger, « Panoramic View of Riemannian Geometry », Springer, 2004 
5. G. Besson, “Une nouvelle approche de l’étude de la topologie des varieties de dimension 3 d’après R. Hamilton 

et G. Perelman », Séminaire Bourbaki, 57ème année, 2004-2005, n°947, Juin 2005 
6. J.P. Bourguignon, « The Unabated Vitality of Kählerian Geometry »,  edited in « Kähler Erich, Mathematical 

Works », Edited by R. Berndt and O. Riemenschneider, Berlin, Walter de Gruyter, ix, 2003 
7. P. Gauduchon, « Calabi’s extremal Kähler metrics : an elementary introduction», Ecole Polytechnique 
8. K. Kenmotsu, “Weierstrass formula for surfaces of prescribed mean curvature”, Math. Ann.,n°245, 1979 
9. D.A. Hoffman and R. Osserman, „The Gauss map of surfaces in R3 and R4“, Proc. London Math. Soc., vol.3 , 

n°50, pp.27-56, 1985 
10. International Conference “Geometric Flows : Theory & Computation”, IPAM, UCLA, USA,  February 3-4 , 

2004 


	SIEGEL METRIC FOR COMPLEX AUTOREGRESSIVE MODEL 
	INFORMATION METRIC FROM ERICH KÄHLER GEOMETRY  
	INFORMATION RICCI & CALABI FLOWS   FOR COMPLEX AR 
	DEFORMATION BY GAUSS MAP & WEIERSTRASS FORMULA    
	MEANING OF FOURIER HEAT EQUATION   BY INFORMATION GEOMETRY 
	REFERENCES 

