
The evolution of learning systems: to Bayes or
not to be

Nestor Caticha∗ and Juan Pablo Neirotti†

∗Instituto de Física Universidade de São Paulo,
São Paulo, Brazil

†NCRG Aston University ,Birmingham United Kingdom

Abstract. Bayesian algorithms pose a limit to the performance learning algorithms can achieve.
Natural selection should guide the evolution of information processing systems towards those lim-
its. What can we learn from this evolution and what properties do the intermediate stages have?
While this question is too general to permit any answer, progress can be made by restricting the
class of information processing systems under study. We present analytical and numerical results
for the evolution of on-line algorithms for learning from examples for neural network classifiers,
which might include or not a hidden layer. The analytical results are obtained by solving a varia-
tional problem to determine the learning algorithm that leads to maximum generalization ability.
Simulations using evolutionary programming, for programs that implement learning algorithms,
confirm and expand the results.

The principal result is not just that the evolution is towards a Bayesian limit. Indeed it is
essentially reached. In addition we find that evolution is driven by the discovery of useful structures
or combinations of variables and operators. In different runs the temporal order of the discovery
of such combinations is unique. The main result is that combinations that signal the surprise
brought by an example arise always before combinations that serve to gauge the performance of
the learning algorithm. This latter structures can be used to implement annealing schedules. The
temporal ordering can be understood analytically as well by doing the functional optimization in
restricted functional spaces. We also show that there is data suggesting that the appearance of these
traits also follows the same temporal ordering in biological systems.

Keywords:
PACS:

INTRODUCTION

Evolutionary pressures arise from a wide variety of sources. We will look into the
consequences that different capabilities of information processing may have in the
fitness, survival and evolution of information processing systems (IPS). By the latter we
would like to mean natural organisms but will settle for the analysis of artificial IPS and
then rather simple ones. Even in the restricted theater of computer simulations, evolution
history cannot be retraced if there is the slightest of changes in initial conditions. The first
aim of statistical mechanics approaches to evolution is identifying reproducible features.

We will consider the evolution of certain classes of neural networks (NN) classifiers
that may learn from examples. The correct classification of an example is determined
by the environment represented itself by a classifier. The NN may evolve by changes in
its architecture, by changes of the learning algorithm it uses to learn, or both. Fitness
will be given by some measure of the efficiency such as the generalization ability, the
probability of correctly classifying a new input. The input to the NN are N-dimensional

The evolution of learning systems: to Bayes or not to be July 1, 2006 1

vectors that can be thought of as representing sensorial data, the classification into
one of two possible categories represent the action taken. We will discuss analytic and
simulation results obtained from evolutionary programming. The main message is that in
this simple scenario, Bayesian limits are essentially reached. Moreover, during evolution
certain intermediate nonoptimal architectures and learning algorithms are visited in
a quite systematic way. We have identified a temporal ordering in the appearance of
features of the learning algorithm which may find a parallel in biological systems. We
now review some results concerning optimal learning algorithms in a class of simple
NN obtained from a variational method and optimization under restrictions. We then
discuss their relation to Bayesian bounds and finally present results of a simulation of
genetic programming [1] where the learning algorithms are represented by programs.
By selection, offspring programs enventually evolve to algorithms that saturate Bayesian
bounds.

OPTIMAL MODULATION

We consider a boolean perceptron learning from a set of examples {Sµ ,σBµ}, where
the Sµ are N-dimensional vectors drawn independently from a distribution P(S) and the
environment is represented by a function σBµ = TE(Sµ). Here we only consider linearly
separable boolean rules, so that σBµ = sign(B.Sµ) for some unknown quenched vector
B which represents the environment. The NN share the same architecture with σµ =
sign(J.Sµ). We can study both analytically and numerically more complex architectures.
Elsewhere we will study evolving architectures and the evolution of the complexity of
architecture. We consider as natural the on-line learning scenario where the NN receives
the examples sequentially and errors are not fatal. Knowledge of {Sµ ,σBµ} can be used
in learning by updating the weights Jµ → Jµ+1:

Jµ+1 = Jµ + f (Sµ ,σBµ , ...) (1)

The f function carries the information in the sensorial data, the correct classification and
any other possible statistic that maybe available. Physicists have considered a version of
Hebbian learning (e.g. [7]), inspired in biology, where f is given by fHebb = 1

N Sµ σBµ .
We consider the simplest family of learning algorithms by extending to the modulated
Hebbian learning, where

f = F
1
N

Sµ σBµ (2)

and F , the modulation function, is an unknown function of an, up to now, unknown
set of variables. These variables are only restricted by the present and past available
information and the capacity of the NN to remember it. For the simple perceptron case,
such memory is quite limited, but in the general adaptive architecture case, modules
dedicated to compute useful statistics can appear.

The final ingredient is the fitness function. We think natural to consider the general-
ization error. Although this is not available in constructing the NN, the environment can
surely deem them fit or not according to it. The generalization error will be a functional

The evolution of learning systems: to Bayes or not to be July 1, 2006 2

of the modulation function:

eg{F} =

∫

Θ(−σBσ)dP(S) (3)

We now study the dynamics of eg as a function of the number of examples. This can
be done by considering the simplifying thermodynamic limit (TL) where the number of
examples µ and N → ∞, with t = µ/N finite.

We now make an unessential restriction to the case where the distribution of examples
is uniform, so that eq. 3 is easy to calculate in the TL. Doing the integral of eq. 3 shows
that the relevant order parameter is ρ = B.J/J, the overlap between the (normalized)
environment weight function and that of the NN, of length J, then eg = 1

π cos−1 ρ Eq.
1 with a general modulation function (eq. 2) multiplied by B gives the variation of the
overlap due to the addition of one example:

ρµ+1 = ρµ +
1

NJµ

[

(bµ −ρµhµ)σBµFµ −
ρµF2

µ

2Jµ

]

, (4)

where bµ = B.Sµ and hµ = Jµ .Sµ/Jµ .
It can be shown [4] that while ρ is a self-averaging quantity in the TL, the variation

∆ρ is not. Averaging over the µ th example and taking the TL, with dt = 1/N, we get

dρ
dt

=
1
J

∫

dhdbP(h,b)

[

(b−ρh)σB(b)F − ρF2

2J

]

. (5)

Here σB(b) = sign(b) and P(h,b) = 1
2π exp(−(b2 +h2 −2bhρ)/(2(1−ρ2)), h and b are

gaussian variables with unit variance and correlation ρ .
We now ask the fundamental question: which modulation function F leads to the

maximum gain of information per example? The answer obviously depends on the
variables upon which F depends. Call H the hidden variables not available to F , which
depends solely on the set V of visible variables. Then the optimal modulation function
is obtained from

δ
δF

deg

dt
= 0, (6)

This is the same as δ
δF

dρ
dt = 0, which results in the posterior average over the nuisance

variables H

F̄(V) =

〈

JσB(
b
ρ
−h)

〉

H|V
. (7)

Fig. 1 (left) shows the modulation function as a function of the field σBh for different
stages of the learning process. Here the available information is V = {σB,S,σJ,J,ρ}
while H = {b}. In this particular setting we cannot do better than this and it even may
seem too much to include ρ in the group, since in general the generalization error is
not available. However, for the optimal modulation function the available J obeys a
differential equation that is exactly the same as ρ . So starting from J = 0 leads to J = ρ .
This is not practical in an application but good online estimators of ρ can be found, [11]

The evolution of learning systems: to Bayes or not to be July 1, 2006 3

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

3

e_g=0.1
e_g=0.2
e_g=0.3
e_g=0.4
e_g=0.49

-4 -2 0 2 4

hσµ

0

10

20

30

40

f

||J|| = 40

||J|| = 30

||J|| = 20

||J|| = 10

||J|| = 0

FIGURE 1. Modulation function (left) Variational, (right) Evolutionary program. Both show the same
behavior. Surprise: Errors give rise to larger corrections than correct examples. Performance: This differ-
ence increases as the NN has been exposed to more examples and eg decreases

leading to practically optimal algorithms for this particular learning scenario. In this case

F̄(V) =
1√
2π

√

1−ρ2 e
−h2

2λ2

er f c(− hσB√
2λ

)
. (8)

where λ =
√

1−ρ2/ρ The most striking characteristics of the resulting algorithm
are the following. The modulation function starts giving the same Hebbian weight to
examples indifferent to whether they are correct or not and learning is driven purely
by correlation between input and output. As the learning process goes on, the weight
of errors is increasingly more important, with correct examples bringing about little if
any weight change. At this latter stage the learning occurs by error correcting. So the
modulation incorporates the correct annealing schedule.

Surprise, Performance and partial optimization

Correction of errors means that a change in the weights J occurs when σJ 6= σB, that is
when a surprise occurs, i.e the expectation of the answer is not met by the correct answer
from the environment. At the beginning of the learning process learning is purely by
correlations and the surprise is not important, an ignorant does not learn more by paying
different attention to correct and wrong cases when it is wildly guessing. As learning
makes errors less frequent, more importance should be given to them. That means the
learning process has been changed by its improved performance.

We are interested in the evolution of learning systems. Fully optimized algorithms
will not appear at the beginning of the evolutionary process, because the important vari-
ables have not been identified yet. It is natural to ask: what are the optimal modulation
functions that appear if the optimization is done with a restricted V set? It is remarkable
that the answer points to a temporal order in how the set of variables should be aug-
mented. Does the inclusion of a variable always lead to a fitter algorithm? No. Consider
two variables A and B and the fitness

�
. Call A =surprise and B =performance and

call C collectively the rest of the available variables. By temporal ordering we mean the

The evolution of learning systems: to Bayes or not to be July 1, 2006 4

following result:
�

(C) =
�

(B,C) <
�

(A,C) <
�

(A,B,C) (9)

If the learning algorithm of an IPS that uses only C is to evolve into a better one, then eq.
9 shows that there will be no initial pressure to develop a structure to measure B, whereas
the improvement due to the single addition of A may justify the cost of such a structure.
This doesn’t mean that B is not useful, for the last term shows that it contributes to the
increase in fitness. It means that B is only useful if A is present and so it had to appear
before B, thus increase in complexity follows the time ordering

(C) → (AC) → (ABC).

BAYESIAN LEARNING

A neural network can be thought of an IPS that is quick in the processing but might not
be the best possible in performance. The analysis above prompted several workers to
try understanding the variational results from a Bayesian perspective. The full Bayesian
approach of ([5]) gave the off-line generalization error bounds but it was not constructive
in the sense that it did not show if a NN could reach those bounds. In ref. ([8]) the
variational method was used for the off-line problem and showed an off-line NN learning
algorithm that saturates the Bayes limit by using replica techniques. Then an on-line
Bayesian algorithm was proposed by Opper ([6]) and showing that the on-line optimal
algorithm described above works as follows. The weight vector J is the expected value
of a gaussian posterior distribution of weights and

√

1−ρ2/ρ is related to the variance
of the posterior. The addition of a new example changes the posterior which is no longer
a gaussian. The new posterior is projected into the manifold of gaussians by choosing
the least information loss, or smallest Kullback-Liebler distance (MaxEnt projection).
The change in mean and covariance of the posterior give a learning algorithm together
with an annealing schedule which in the TL give the same behavior for non tensorial
modulation functions as the variational method.

EVOLUTIONARY PROGRAMING: TO BAYES OR NOT TO BE

Methods

Genetic programming (GP) is not a genetic algorithm (GA). While both ideas belong
to the general area of Evolutionary Programming, GA operate on vectors of parameters
while GP deals with programs which have a priori no specific from nor size. Our
programs here output a number and this will represent a modulation function and thus
implement a learning dynamics as in eq. (1). To build the programs we define a set of
the variables described above. All variables plus numbers are available although they
may not be used or if used, may not be useful. We of course exclude B and b since that
is giving the answer away. A set of operators is also defined so that programs can be
written. The operator set includes simple addition, subtraction of vectors and scalars,
absolute value, multiplication of scalars, of scalar and vector, dot product. Division,

The evolution of learning systems: to Bayes or not to be July 1, 2006 5

log, sqrt, exp are protected so their arguments do not get out of bounds. Variables and
operators are referred to in general as atoms. The programming language is LISP.

Npop (typically 500) programs are created at random, taking care that syntactic rules
are obeyed so programs compile and run without an error message in a given amount
of time. Such programs are called faithful. If this maximum time is not enough to stop,
then the program is killed. The population of perceptrons is presented sequentially with
examples and the generalization error is measured. Since errors are not fatal and we
want to obtain algorithms that are best possible at every stage of the learning curve,
we measure an integrated fitness function

�
k = −∑P

µ=1 µeg(µ), for each member k
of the population. P is the age span of the NN. From this fitness function we select
the programs that will serve to form the next generation which will also contain Npop
NNs. The new population will be constructed by applying the operators of GP. We use
asexual reproduction, mutation and crossover. By asexual reproduction we mean that
the top fraction, say the top ten percent programs are copied to the next generation.
Mutation is implemented by making just a random change of an atom by another of
the same type, to maintain faithfulness and then introducing the new individual into
the next population. Crossover requires more explanation. Programs are to be thought
about by their representation of their parsing trees. Two programs of the population are
chosen by a tournament to be described below. The parsing trees are cut at compatible
random points, and the cut branches are exchanged. The two new programs go to the
next generation. For the tournament choose a ,1 < a ≤ P, and ten programs. The one
with the lowest eg(a) is chosen as a parent for crossover. Our crossover uses one parent
obtained by tournament in the top fraction and another parent chosen by tournament
form the whole population. Our learning bounds have been obtained in the TL but due
to heavy numerical costs we have kept the vectors’ dimension at N = 11.

RESULTS AND CONCLUSIONS

Again we stress that rerunning a simulation with a different random seed will give
different results. Our aim is in identifying robust features that occur in a typical run.
Not every run works in the sense that efficient learning rules appear. Some get trapped
in evolutionary dead ends, where either programs get reduced to a single symbol or
algorithms fail to learn, within the time allowed for a simulation 1. Broader scope
simulations with interactions with other species will probably lead these perceptron
to extinction. But we have found that in a large fraction of runs (6 of 15), interesting
things do happen. Although final programs are very different from run to run, they
implement essentially the same algorithms with numerical results as good as the bounds.
Fig. 1 shows the modulation function as a function of the field σBh at left from the
variational study and at right from a latter stage in a typical good run. Both figures show
the main characteristics a good learning algorithm should have. At the early stages,
learning occurs by correlation while at later times the surprise of an error gives rise to
a large corrections, while correct results do not cause great change in the weights. In

1 About one week on a 15 node Beowulf cluster

The evolution of learning systems: to Bayes or not to be July 1, 2006 6

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 100 200 300 400 500 600

250

200

150

100

 50

 0

λ

ω

(0)

G

0 200 400 600 800
G

0

0.025

0.05

0.075

0.1

S
u

rp
ri

s
e

 a
n

d
 P

e
rf

o
rm

a
n

c
e

Surprise
Performance

FIGURE 2.

fig. 2 (left) we show information about the the best of generation (BOG). A program
can be represented by a parsing tree, but is written as a list, a linear concatenation
of symbols. Each symbol at a given position in the list appears in the population in
an equivalent position with a certain frequency. Each vertical line in fig. 2 represents
the list of the BOG for a given generation and is color coded to show the frequency
of that specific symbol at a given position. The higher positions are for the symbols
nearest to the leaves of the parsing trees and the lowest are nearer to the bottom. The
fact that symbols that appear at the bottom are very frequent in the population means
that certain combinations of symbols, which represent good traits for the modulation
functions, invade the population early on. In this particular example an absolute value
operator ensures that the modulation function is positive. At the beginning this proves
so much better than no program will survive with out that feature.

The dynamics shows sudden changes associated to the appearance of a new combina-
tion of variables in a favourable place in a program and the subsequent invasion of the
population. Fig. 2 (right) shows two such invasions. We were able, with hindsight bor-
rowed from the variational approach, to identify the structures that appeared and drove
the dynamic transitions. The curve labeled surprise shows the frequency over the whole
population of the combination of symbols σBh. This quantity is positive if the answer
is correct (sign(h) = σB) and negative if wrong (sign(h) 6= σB). If it is large then the
answer is easy, as small perturbations in S will not change the answer and difficult if it is
near zero. For σBh large positive there is no surprise, for σBh ≈ 0 the answer is difficult,
errors are likely but for σBh large and negative the confident prediction turns out to be
wrong. After about 8 generations there is a large fraction of programs that use this in-
formation and it is a very common combination. We cannot tell from the frequency that
it is being used correctly always, but it shows that some correct use of the information
must be occurring because of the invasion.

The second curve in fig. 2 (right) shows the invasion of the population by the combi-
nation of symbols J.J. This gives in stationary environments, rise to a schedule anneal-
ing variable, negatively correlated to the covariance of the posterior distribution in the
Bayesian approach and to ρ2 of the variational method. It can appropriately be dubbed
a performance variable.

In all runs where good results were obtained the surprise transition happened before
the performance transition.

This temporal order is in total accord with the results of the variational program with
restricted sets and in particular eq. 9. The fact that it happened should be analyzed in the

The evolution of learning systems: to Bayes or not to be July 1, 2006 7

light that these are different optimization methods.
We reported on part of a long program of studies. The variational program has been

applied to more complex NN, with hidden units [9, 12], with additive or multiplicative
noise [8],in drifting environments , adaptation to large sudden changes and more [11].
The offline variational approach for perceptrons gives exactly the Bayes limit and a NN
learning algorithm that reaches that limit [8].

That the variational approach to determining learning algorithms, when possible
to calculate, gives Bayes like results should not come as a surprise. The interesting
surprise comes from looking at neuropsychological literature. Brain activity, as can
be assessed from the study of lesions and from functional imaging is quite localized
on a macroscopic scale. In particular, there are structures in the brain responsible for
neuropsychological activities that are of direct interest to us. The amygdala has been
pointed ([16]) as responsible for identifying the mismatch or the surprise element in the
processing of new information. Also, work on prefrontal syndrome patients has clearly
indicated the role of the prefrontal lobe in evaluating performance levels for on-line
(working memory) procedures ([17]). Patients with bilateral damage on the ventrial
prefrontal cortex have shown the perseverance effect, not changing strategies that once
proved useful just as lesioned perceptrons that cannot evaluate performance ([11]). Most
interestingly is the fact that the amygdala is an older structure than the prefrontal lobe
in the phylogenetic evolution of the brain.

Studying Bayesian limits under constraints has pointed out important variables that
have a role independent of the details of a particular realization of the evolution film. A
temporal order in the increase of complexity by the introduction of structures that can
measure specific order parameters permits beginning to think that similar mechanisms
have governed the evolution of our own brain.

Research supported partially by FAPESP. We thank Osame Kinouchi, Mauro Copelli
and Renato Vicente for very useful discussions.

REFERENCES

1. J. R. Koza Genetic Programming (MIT Press, Cambridge, Ma, 1992)
2. G. L. Valiant Comm ACM 27 (1984), pp. 1134
3. O. Kinouchi and N. Caticha J. Phys A: Math and Gen, 25, (1992), pp. 6243
4. G. Reents and R. Urbanczik Phys. Rev. Lett, 80 (1998), 5445
5. M. Opper and D. Haussler Phys. Rev. Lett, 66, (1991), pp. 2677
6. M. Opper Phys. Rev. Lett, 77, (1996), pp. 4671
7. A. Engels and C. Van den Broeck Statistical Mechanics of Learning , Cambridge UP (2000)
8. O. Kinouchi and N. Caticha Phys Rev E, 53,(1996), pp 6341
9. M. Copelli and N. Caticha J. Phys A: Math and Gen, 28 (1995) , pp 1615
10. N. Caticha and O. Kinouchi Phyl Mag B, 77,(1998), pp 1565
11. R. Vicente, O. Kinouchi and N. Caticha Machine Learning, 32, (1998), pp. 179
12. R. Vicente and N. Caticha J. Phys A: Math and Gen, 30 (1997), pp L599
13. M.Biehl and N. Caticha in Handbook Brain Theory and NN, M. A. Arbib, Ed., MIT Press (2003)
14. N. Caticha and E. A. de Oliveira Phys Rev E, 63,(2001), pp 061095
15. J. P. Neirotti and N. Caticha Phys Rev E, 67,(2003), pp 041912
16. E. R. Kandel and J. H. Schwartz, eds Principles of Neural Science (Elsevier)
17. G. V. Williams and P. S. Goldman-Rakic Naure, 376, pp 572

The evolution of learning systems: to Bayes or not to be July 1, 2006 8

