
Learning Complex Classi�cation Models from Large Data Sets

Julian L. Center, Jr.

Creative Research Corp., 385 High Plain Road, Andover, MA 01810, jcenter@ieee.org

Abstract To design a Bayesian classi�cation algorithm, we typically start with a gen-
eral model form with adjustable parameters and learn a posterior probability distribution
for the model parameters based on a set of training data. In many applications, the model
form has a large number of parameters, and a large number of samples is needed to nar-
row the range of probable models. Because the model is complex and there are many
samples, computing the likelihood of a particular model takes signi�cant computer time.
Therefore, exploring the large model-parameter space in detail becomes an intractable
problem.

We outline a computationally feasible solution to this problem based on breaking
the large data set into several smaller data subsets and processing the subsets in stages.
Each stage combines its subset of the training data with an intermediate distribution
that summarizes previous stages. We combine search methods with nested sampling to
focus our exploration of the model space on high probability areas. We then use varia-
tional methods to approximate the resulting distribution on the parameter space. This
approximation summarizes the results and becomes the next intermediate distribution to
feed the next processing stage.

THE PROBLEM

A Bayesian pattern classi�cation algorithm computes the probability that a class label k
should be associated with an attribute vector x observed in a speci�c operating environment.
This probability is conditioned on a collection of training data T that is representative of the
operating environment. In other words, the algorithm is designed to compute p (kjx;T). (As
usual, conditioning on other initial information I is implied throughout.)

Developing a practical classi�cation algorithm usually begins with the choice of a family of
models, with a particular model within the family speci�ed by a vector of model parameters
� 2 �. Choosing a model within the family completely determines a classi�er, and we assume
that p (kjx; �; T) = p (kjx; �). Neural networks, mixture models, and hidden Markov models
are examples of such model families.

Theoretically, the formulas of probability theory tell us that we can determine the prob-
ability we want by

p (kjx; T) =
Z
�
p (kjx; �) p (�jT) d�

where we use Bayes�rule to compute

p (�jT) = 1

Z
p (T j�) p (�) , where Z , p (T) =

Z
�
p (T j�) p (�) d�

We assume that, for any choice of model �, we can compute values of the prior p (�) and
the likelihood p (T j�). However, in most cases, the model space � is in�nite and integrals

above cannot be evaluated in closed form. This means we cannot directly compute Z and
the integrals must be approximated by summations.

If the parameter space is small (low-dimensional), quadrature methods can be used to
approximate the integrals [2]. But for many applications, the models become quite complex,
and the associated parameter space becomes quite large. For example, an image recogni-
tion algorithm may be based on a mixture model with many components, each with many
parameters. In these cases, quadrature methods are impractical.

Several methods have been suggested for approximating p (kjx; T). These include Markov
Chain Monte Carlo (MCMC), slice sampling, importance sampling, and nested sampling
[2][3][6]. Each of the methods can be viewed as approximating the posterior density p (�jT)
with a discrete distribution on model space

p (�jT) '
n�1X
i=0

wi� (�; �i)

Here, the weights wi are non-negative and sum to one, and � (�; �i) is a delta function that
peaks when � and �i match. The �i�s are samples drawn from some probability distribution
over the model space, s (�). This type of approximation leads to

p (kjx; T) '
n�1X
i=0

wip (kjx; �i)

a form that is sometimes referred to as a "mixture of experts".
Both MCMC and slice sampling strive to sample from the posterior probability distri-

bution p (�jT). Therefore, the weights are chosen to be equal, wi = 1
n . For importance

sampling, the samples are drawn from a known distribution s (�). The weights are chosen to
be

wi =
r (�i)Pn�1
j=0 r (�j)

, where r (�i) =
p (T j�i) p (�i)

s (�i)

Nested sampling [6] can be viewed as a form of adaptive importance sampling. First, m
samples are drawn from s (�) and ranked by the corresponding values of r (�). The sample
with the smallest value is removed and saved as �0.

The next sample is drawn from s (�) with the restriction that samples with r (�) < r (�0)
are rejected. Again the samples are ranked by r (�) and the lowest ranked value is removed
and saved as �1. This process is repeated until a total of n samples has been drawn.

At step i, the probability of drawing a particular sample (and not rejecting it) is

si (�) =

(
s (�)

hR
f�:r(�)�r(�i�1)g s (�) d�

i�1
when r (�) � r (�i�1)

0 otherwise

Therefore, the weight for sample i is chosen to be

wi =
vir (�i)P
j vjr (�j)

where

vi �
Z
f�:r(�)�r(�i�1)g

s (�) d�

Stage 0 Stage 1 Stage 2 Stage n
π0 π1 π2 π3 πn πn+1

T0 T1 T2 Tn

Prior Posterior

Stage 0 Stage 1 Stage 2 Stage n
π0 π1 π2 π3 πn πn+1

T0 T1 T2 Tn

Stage 0 Stage 1 Stage 2 Stage n
π0 π1 π2 π3 πn πn+1

T0T0 T1T1 T2T2 TnTn

Prior Posterior

Figure 1: Staged Processing

is an approximation to the volume under s (�) restricted to the set where r (�) � r (�i�1).
Following logic similar to [6], a reasonable approximation is

vi =

8<:
�

m
m+1

�i
for i < n�m�

m
m+1

�n�m
for i >= n�m

In e¤ect, these methods approximate the posterior distribution on model space with a
mixture of delta functions. In theory, any of these methods can achieve any desired accuracy
by including enough samples in the approximation. Unfortunately, the computations needed
to determine these approximations often become overwhelming. If we are considering models
with a large number of parameters, we need a large amount of training data to narrow
the range of probable models. Because the model family is complex and there is a lot of
training data, computing the likelihood of a particular model takes signi�cant computer
time. Therefore, exploring the large model space in detail becomes an intractable problem.

Of course, if the data set is large enough, the information gain will narrow the range of
probable models to a very small subset of the parameter space. If we can �nd this subspace
quickly, we can employ our computational power to adequately explore this region. However,
searching for this small region can prove di¢ cult because it is so small and because evaluating
each point in the search involves evaluating the complete likelihood function.

A SOLUTION

One approach to solving this problem is to break the large data set into several smaller
subsets and design an algorithm for processing the subsets in stages, as shown in Figure 1.
That is, we break the training data into disjoint sets

T = [n�1s=0Ts; with Ts \ Tt = ?;8s 6= t

At stage s, the processing algorithm starts with an intermediate probability distribution that
summarizes the results of the previous stages

�s (�) � p (�jTs�1; Ts�2; � � � ; T0)

and works only with its subset of the training data Ts to produce its own intermediate
summary

�s+1 (�) � p (�jTs; Ts�1; � � � ; T0)

Of course, stage 0 starts with the prior distribution

�0 (�) = p (�)

πs
Training
Data Ti

Slice Sampling

Multi-State
Search for

Peaks

Distribution
Approximation

Exploration

Nested
Sampling

πs+1

Distribution
Approximation

Exploitation

Sampling Distribution

Approximate Distribution

Model
Samples

Model
Samples

Model
Samples

& Weights

πs
Training
Data Ti

Training
Data Ti

Slice Sampling

Multi-State
Search for

Peaks

Distribution
Approximation

Exploration

Slice Sampling

Multi-State
Search for

Peaks

Distribution
Approximation

Exploration

Nested
Sampling

πs+1

Distribution
Approximation

Exploitation

Sampling Distribution

Approximate Distribution

Model
Samples

Model
Samples

Model
Samples

& Weights

Figure 2: Processing Stage Internal Structure

and �nal stage produces the desired result

�n (�) � p (�jT)

This approach o¤ers four advantages: (1) The likelihood function for each subset of the
data is far less peaked than the combined likelihood function. This makes the search for the
most probable models easier. (2) The evaluation of the likelihood function for each data subset
is proportionately easier than for the full likelihood function. Therefore, computations are not
wasted on thoroughly evaluating the likelihood function at unlikely points. (3) If additional
training data is obtained at a di¤erent time, it can be utilized without having to reprocess
all of the original training data. (4) Processing can be distributed among many processors,
each working with only a subset of the data.

Figure 2 shows a �owchart for one way of implementing each processing stage. Each stage
starts with an intermediate distribution summarizing the results of the previous processing
stage. We will call this the input distribution. The objective is to produce an output distri-
bution that summarizes the combination of previous results with information from the local
training data set Ti.

Each processing stage is broken into two phases, which we call exploration and exploita-
tion. In the exploration phase the objective is to try to �nd all of the signi�cant peaks of the
output distribution and then expand outward to arrive at a �rst approximation to the output
distribution. In the exploitation phase, the objective is to re�ne this �rst approximation to
produce the output distribution for the stage.

In the speci�c implementation depicted in Figure 2, the exploration phase uses multi-
state search methods like the ones discussed by Center [1] and Skilling [5] to �nd peaks of
the output distribution. Then slice sampling methods are used to �esh out the distribution
by expanding from these peaks. The result is a set of samples from model space. As noted
above, this can be viewed as a discrete distribution on model space. The last step in the
exploration phase is to approximate this discrete distribution with a continuous distribution
that will act as a sampling distribution during the exploitation phase.

During the exploitation phase, we use slice sampling to draw candidate parameter values
from the sampling distribution, and we employ nested sampling techniques to focus on high
probability areas of the parameter space. As noted above, nested sampling acts as a form
of importance sampling to give a collection of samples and associated weights that form a

discrete approximation to the posterior distribution. Finally, we approximate this discrete
distribution with a continuous distribution to form the output of the stage. The dashed
arrow in Figure 2 indicates that we can iterate the nested sampling and approximation steps
to further re�ne the approximation.

The key to building a practical staged-processing algorithm lies in the approximation
form used for the intermediate probability distributions. It must be feasible to compute, and
it must be compatible with the search and sampling methods. A discrete distribution is not
adequate for this approximation because it limits the models that can be examined in later
stages. A speci�c recommendation for this approximation is presented in the next section.

APPROXIMATE DISTRIBUTIONS

Model Representation

To describe the form of the approximate distribution on model space, we must �rst examine
some di¤erent ways of representing models. We will focus on mixture models as a concrete
example, but these methods apply to other complex models as well.

We assume that the model space � is broken into subspaces �m within which the models
are all of the same order. For mixture models, the order corresponds to the number of clusters
in the model. For a neural network, the order corresponds to the number of nodes in the
network. Of course we have

� = [1m=1�m and �m1 \�m2 = ? if m1 6= m2

Within a subspace �m, we will use three distinct ways of representing a particular choice
of model. First, there is the parameter space natural to the model form. For example, we
may choose a Gaussian mixture model of the form [1]

p (x; kj�) =
m�1X
c=0

kc�c�c (x;�c; �c)

Here the model parameter set is composed of the cluster weight vector �, the cluster class
distribution vectors c, the cluster mean vectors �c; and the cluster standard deviation vectors
�c.

In some cases, there are constraints on the model parameters. For example, in the mixture
model above, the � and c vectors must correspond to discrete probability distributions, and
the elements of the standard deviation vectors must all be positive. To facilitate some of
the operations used in exploring the model probability distributions, we need to eliminate
constraints and transform to a model representation that is vector of real numbers that ranges
freely over Rm = Rd0 � Rd1 � � � � � Rdn . We call this representation the state space. For
example, in the mixture model, we accomplish this by transforming them-dimensional cluster
weight vector � to an (m� 1)-dimensional vector b by the inverse softmax transformation
bc = ln�c+1 � ln�0. We can transform back by

�0 =
1

1 +
Pm�2
a=0 exp (ba)

�c =
exp (bc+1)

1 +
Pm�2
a=0 exp (ba)

for c = 1 to m� 1

For other exploration operations, we need a di¤erent representation. To arrive at this
new representation, we �rst transform a point x in a state space to a point y in the Cartesian

product of unit cubes UC = (0; 1)
d0�(0; 1)d1�� � ��(0; 1)dn by applying the logistic transfor-

mation yi = [1 + exp (�xi)]�1 to each component. The inverse of the logistic transformation
is xi = ln (yi)� ln (1� yi)

Finally, we transform to a n-dimensional torus by computing the distance along the
Hilbert curve embedded in each of the unit cubes [4]. We represent each of these dis-
tances by an extended-precision twos-complement fraction representing a number in the range
[�0:5; 0:5). Since addition and subtraction in twos-complement arithmetic wraps around from
0.5 to -0.5, we consider each of these mappings as a mapping to a circle and the combined map-
ping as onto a n-dimensional torus. We designate this space by Hm = Hdo �Hd1 � � � ��Hdn
and call H = [mH the code space. We represent the code for model � 2 �m by a vector of
extended-precision fractions h (�) 2 Hm

Approximation Form

To make this approach feasible, we must approximate the intermediate distributions using a
manageable form. We choose the following distribution on code space

�s (�) �
p�1X
j=0

aj"
�
�; b�j ; �j�+ ap (�;�) + ap+1� (�)

Here the a�s are positive weights that sum to one. Each "j
�
�; b�j ; �j� is a probability distribu-

tion in model space that measures the similarity of � to a reference model b�i. Speci�cally, for
each "

�
�; b�j ; �j�, we choose a truncated Gaussian distribution on the appropriate subspace

of code space, which takes the form

"
�
�; b�j ; �j� =

8><>:
1
zj
exp

"
�1
2

P
k

�
hk(�)�hk(b�j)

�jk

�2#
if � and b�j are the same order

0 otherwise

Here, hk (�) represents the kth component of the Hilbert code for � (viewed as an extended-
precision fraction), �jk is a scale parameter (represented as an extended-range double-precision

number), and zj is the normalization necessary to make "
�
�; b�j ; �j� a probability distrib-

ution. Since the extended-precision fractions only range over [�0:5; 0:5), zj must take that
into account. We will call these terms in the approximation clumps.

The last two terms in the equation for �s (�) depend only on the model order m (�). The
function (�) represents a Poisson distribution on the model order m (�)

 (�;�) =
�m(�) exp (��)

m (�)!

The parameter � determines how fast the probability decays with order. The function � (�)
represents a second-order zeta distribution

� (�) =
6

�2
1

[m (�) + 1]2

which decays relatively slowly with model order.

Fitting the Approximation

To implement the approach in Figure 2, we must �t a continuous distribution � (�) of the
form above to a discrete distribution

q (�) =

n�1X
i=0

wi� (�; �i)

that comes from either slice sampling or nested sampling. We start by approximating q (�) by

simply replacing the delta function by truncated Gaussians at the same centers, "
�
�; b�i; �i�

with b�i = �i. The spreads �j control the smoothness of the approximation and are initially
chosen so that, if b�j and b�i are of the same order, then �j = �i. For the Poisson term, we
start with the decay rate � equal to the weighted average of the orders of the models in
the discrete distribution. The weights of the Poisson and zeta distribution terms are set to
predetermined starting values and the other weights are reduced so that all the weights sum
to one. This gives a starting approximation that has as many clumps as there are sample
models in the discrete distribution q (�).

Next, we use a graph contraction method to reduce the number of clumps by consolidating
clumps that are close to each other. To accomplish this, each clump is represented by a node
in the graph. The closeness of two nodes corresponding to b�i and b�j is measured by their
a¢ nity, which we choose to be "

�b�i; b�j ; �j� as de�ned above. Two nodes can be combined
if their a¢ nities to all other nodes are similar enough. We combine two nodes (clumps) by
simply setting the weight of one clump to zero and adding its original weight to the weight
of the other clump.

Now we �t this reduced approximation � to the discrete distribution q (�) by minimizing
the Kullback-Leibler divergence

DKL (qjj�) = Eq

�
ln
q (�)

� (�)

�
= �

n�1X
i=0

wi ln� (�i) +

n�1X
i=0

wi lnwi

The minimum can be found by an iterative algorithm very similar in form to the standard
EM algorithm for mixture models. We avoid degeneracies by imposing a lower limit on the
components of the ��s and by eliminating clumps with weights below a minimum level.

The iterative process is given by the equations below. Here the index i ranges over
the sample models in the discrete distribution and j ranges over the components of the
approximation. We start a step in the iteration with approximation parameters a�j ; b��j ; and
��j . First we compute the similarities of the model components to the sample models

sji =

8><>:
a�j "

�
�i; b��j ; ��j � for j = 0 to p� 1

a�p (�i;�
�) for j = p

a�p+1� (�i) for j = p+ 1

9>=>; for i = 0 to n� 1

Then we compute the responsibilities

�ji =
sjiP
k ski

and update the approximation parameters by

a+j =
X
i

wi�ji

hk

�b�+j � = hk

�b��j �+ 1

a+j

X
i

wi�ji

h
hk (�i)� hk

�b��j �i
�+jk =

1

a+j

X
i

wi�ji

h
hk (�i)� hk

�b��j �i2
�+ =

1

a+p

X
i

wi�pim (�i)

To retain adequate precision, these equations were implemented in C++ using abstract data
types. A vector of extended-precision fractions was used to implement h (�), the Hilbert

code of model �. The di¤erence hk (�i) � hk

�b��j � was implemented as an extended-range
double-precision number, and suitable arithmetic operations for combining these extended
types were implemented.

CONCLUSION

A staged-processing approach makes Bayesian learning of complex models feasible for large
data sets. The key to this approach is a method of approximating intermediate probability
distributions that is both computationally feasible and compatible with established sampling
methods. One such approximation is based on a mixture of truncated Gaussian distributions
on a coded model representation based on the Hilbert curve mapping.

References

[1] J. Center, "Approximating Posterior Distributions for Mixture-Model Parameters" in R.
Fischer, R. Preuss, U. von Toussaint, Bayesian Inference and Maximum Entropy Methods
in Science and Engineering 24, American Institute of Physics, Melville, NY, 2004, pp.
437-444.

[2] M. Evans and T. Swartz, Approximating Integrals via Monte Carlo and Deterministic
Methods, Oxford University Press, 2000.

[3] D. MacKay, Information Theory Inference, and Learning Algorithms, Cambridge Univer-
sity Press, 2003, pp. 387-397.

[4] J. Skilling, "Programming the Hilbert curve," in G. Erickson and Y. Zhai, Bayesian Infer-
ence and Maximum Entropy Methods in Science and Engineering 23, American Institute
of Physics, Melville, NY, 2004, pp. 381-387.

[5] J. Skilling, "Using the Hilbert curve," in G. Erickson and Y. Zhai, Bayesian Inference
and Maximum Entropy Methods in Science and Engineering 23, American Institute of
Physics, Melville, NY, 2004, pp. 388-405.

[6] J. Skilling, "Nested Sampling, " in R. Fischer, R. Preuss, U. von Toussaint, Bayesian
Inference and Maximum Entropy Methods in Science and Engineering 24, American In-
stitute of Physics, Melville, NY, 2004, pp. 395-405.

