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Abstract. We consider the problem of estimating the peak parameteasspectroscopic signal,
i.e. their locations, amplitudes and form parameters. A markadtprocess provides a suitable
representation for this phenomenon: it consists in modelie spectrum as a noisy sum of points
lying in the observation space and characterized by theations and some marks (amplitude
and widths). A non-supervised Bayesian approach coupl¢id MCMC methods is retained to
solve the problem. But the peak number is unknown. Rather tiging a method for model
uncertainty (such as RIMCMC) we propose an approach in vtheeHimension model is constant:
consequently, the Gibbs sampler appears possible anchhakthe idea consists in considering an
upper bound for peak number and modelling the peak occwerbypa Bernoulli distribution. At
last, a label switching method adapted to the approach aspatgposed. The method is illustrated
by an application on a real spectrum.

Keywords: sparse spike train restoration, spectroscopy, signalmdpasition into elementary pat-
terns.
PACS: 02.30.Zz: Inverse problems; 02.50.-r: Probability thestychastic processes, and statistics.

1. INTRODUCTION

We consider the problem of estimating the peak parameteassipectroscopic signal
(a peak spectrum),e. their locations, amplitudes and widths. The goal is to asaly
a chemical spectra to provide an interpretation for phystwemists. The proposed
approach may be used for many kinds of spectra (Raman, idfriu@rescence, etc.),
needing only a parametric form to model the peaks.

This is typically an ill-posed problem, justifying the uskaoBayesian approach, as
retained in previous works. In [1], the optimisation is defteer with a modified version
of Newton-Raphson’s algorithm or an accept-reject like atgm; yet, these methods
may yield to a local minimum and the estimation of peak nunibrot optimal. MCMC
(Monte Carlo Markov chain) methods are now preferred [2, 3]@these works, an
RIMCMC (reversible jump MCMC) algorithm [5, 6] is used to estientite variables.

In this paper, the proposed method is also set in a Bayesianagpcoupled with an
MCMC method. The main originality results from the use of astant dimension model
avoiding to use the RIMCMC algorithm. The paper is organis€dlbsvs. Section 2



defines the marked point process used to model the signactios 3, we propose the
model to keep a constant variable number, which allows tdhes&ibbs sampler. Then
we present prior distributions for each variable and complé posterior distributions.
At last, simulation methods are proposed. Because of thé-$abching problem, the

estimation computation may not be straightforward. So,vamethod to deal with this

problem is presented in section 4. In section 5, the proposetod is supplied on a real
Raman spectrum and, finally, section 6 concludes the paper.

2. PROBLEM FORMULATION

A first approach would be to consider the chemical spectruith@sonvolution of a
sparse spike train and a pattern representing the peak formarked point process
(MPP) provides a suitable representation for the consitipreblem: it consists in a
finite set of objects lying in a bounded space and charaettiy their locations and
some marks. So, the Bernoulli-Gaussian (BG) process [7, 8hslaspread model for
the sparse spike train; it is a MPP with only one mark corredpw to the amplitudes.
Considering that the pattern is unknown, the problem becart@sd deconvolution
problem.

However, the common implementation of this model with MCMCtinoels is not
efficient (see [8]) since it implies to estimate a great nundfevariables (each sample
of the signal), though the majority is zero! Furthermores thodel suffers from two
drawbacks: the peaks are inevitably located on discretéiqus in the grid and they
have the same shape, which is not always true in real chespeatra.

To bypass these problems, we propose to model the spegtagm@ noisy sum ok
positive peaks:
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whereny, wx ands¢ (k € {1,...,K}) stand respectively for the location, amplitude
and width of thekth peak,f is a vector function of lengtiN, andeis aN x 1 vector
corresponding to the noise and model errors. We consider@ntman shape for the
peaks which is usual in Raman spectroscopy and allows to ifgntpe presentation
in this paper since it has only one form parameter. Thenkthepeak amplitude at
wavenumbenis:

S (2)
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Of course, the method can be adapted to other shapes, likss@awr Voigt functions.
There is a substantial gain when modeling peaks as a knovamgdric expression
rather than a non-parametric shape since it introducetablainformation, restricting
the solution space consequently. This new MPP considersiginal as a finite set of
Lorentzian whose marks are the amplitudes and widths.

The considered problem has similarities with the problermiture analysis [6, 9],
as for example the common choice of MCMC methods for optinonatr the label
switching problem. Nevertheless, in the considered proplge estimate the peaks in
the data themselves and not in the data distribution.

fn(nk7Wk7 Sr() =



3. PROPOSED MODEL

3.1. A Constant Dimension M odel

Thanks to the likelihood factorization, the Gibbs samp[gsears easy and natural to
use. But the peak number is unknown, as a result of which thersysrder is likely
to change and the variable number too. In this case, clasdicMC methods (such
as Metropolis-Hastings algorithm or Gibbs sampler) canbwt@pplied because the
posterior is not stationary. For ten years, new MCMC techesdgor model uncertainty
have been proposed [10, 11]. The most famous is the RIMCMC itgof5, 6].
However, we propose another model in which the system osdeomstant, allowing
to use Gibbs sampler.

The idea is to consider the peak number constant and eqi&hdocorresponding
to an upper bound greater than the real peak number and fixdeehyser. To avoid to
obtain an estimated signal wiinax peaks, we are inspired by the Bernoulli-Gaussian
model and introduce the vectqre {0, 1}¥max coding the peak occurrences. Thus, for all
ke {1,...,Kmax}:

« if gk = 1 then thekth peak is present and locatedhatwith amplitudewy and width
S

+ on the contrary, ifgx = 0, thekth peak is not present: it does not appear in the
signal. Its amplitudevy is set to zero but not its location and width: this choice is
motivated by the simulation method (see section 3.4).

Being still inspired by the BG model, the peak occurrermeare distributed according
to a Bernoulli distribution with parametar Equation (1) reads then:

Kmax

y= 3 f(n,wi,s)+e, 3)
=1

where, of courseyy = 0 if and only ifgx = 0. In matrix form, we then have:
y=Gw+e 4)
whereG is theN x Kmax matrix :
G=(f(n,151)  f(MKpao L SKmnar) ) (5)

The variable number is then smaller than a common BG impleatient(as in [8])
in which one has to calculate variables to estimate the sparse spike train, though the
present model needs onlKgax variables §, g, andw). Indeed, one can reasonably
suppose thatBnax < N, that is there is less thaw/3 peaks in the signal. Consequently,
the method will be faster (considering an equivalent timreeich variable simulation in
the Gibbs sampler) and the estimation quality will be bdttegre is less unknowns for
the same data number).



3.2. Prior distributions

Noise. We choose the classical model of a white, Gaussian and maide with
variancere:

e~ N(0,rel). (6)

Peak Location. A priori, we do not have any information about the peak |cwoati
For this reason, we suppose that the peaks are uniformiybditgd on[1, NJ:

Peak Amplitude. As we said in the previous sectiofg,w) is modelled as a BG
process; in addition, the amplitudes are positive. Theegfwe haverk € {1,... Knax}:

gk ~ ﬂer()\>7 (8)
So(Wk) if gk =0,
Vi~ {N*(O, ) ifde=1. ©

whereBer stands for a Bernoulli distributio®y denotes a Dirac centered in zero and
A" stands for a Gaussian distribution with positive suppoftdrse, another prior for
amplitudes could be used. For example, a Gamma distribgsBems efficient, but the
advantages of a normal distribution with positive suppoet tavofold: first, it yields a
normal posterior distribution which is easily simulable¢cend, it can be easily adapted
to other applications where the peaks can have positive egaltive peaks.

Peak Width. In Raman spectroscopy, it is known that peaks have a FWHH (full
width at half height, equals to twice the peak width) oftB®cm L. Therefore, an
inverse gamma distribution is proposed whose mean andneariare equal to 6 cni
and 2.5 cm! respectively:

S~ IG(as,Bs) (10)
where
0s=16.4, Bs=82

Bernoulli parameter. To avoid a degenerative behaviour when the peak number is
too low, a conjugate prior (beta distribution) which pered high values is chosen:

Peak Amplitude Variance.Without any prior onry, its posterior distribution may
not be defined wheK < 2. To avoid this, we choose the following conjugate prior:

fw ~ 1G (0w, Bw)- (12)

This prior is chosen to avoid numerical errors, but not tauerfice the estimation result;
S0, it has to be the less informative as possible. In the $eqaesuppose that the signal
is multiplied by a constant in order to fix roughly the peak &taude peak to a value

close to 1. Then, we propose the following valuesdgrandy:

ow=2+¢, Bw=1l+¢g and el



Noise variance. Because of the lack of information abayt we opt for the tradi-
tional Jeffreys prior:

3.3. Conditional Posterior distributions

Then, the conditional posterior distributions are comgute

2
... ~ exp(— |y =it w,s)| /2re) L (M), (14)
Qk| ... ~ Ber(Ay), (15)
o (W) if gk =0,
W|... ~ . 16
d {9\[+(Hk,pk) if g = 1, (16)
1 Kmax 2 1
Sd- ~ exp( 5|y =5t wi.9)| | Bs/s grle (8. AN
fwl... ~ IG(K/2+40w,W'w/2+By), (19)
2
el ~ 16 (W72, [ly = optmm 90| 2). (20)
whereK denotes the number of present peaks K = zﬁzlqk) and:
1-A fF 12 )}‘1 Pk _T
A= |1+ ——,/—exp|l —=— , =—z f(n,1,%),
k { "\ o IO( 200 Me= "1 kf (Nk, 1,5¢)
_ M'wle v < Kmax
P et ruf(no 189 TN 1,80 k=Y = Dislad (0 We9)

3.4. Variable Simulation

The simulation ohy is provided using a Metropolis-Hastings algorithm. To ioy&
the convergence, we separate the two following cases:

« if gk = 1, the proposal distribution is a Gaussian (with boundedostipsince

Nk € [1,N]) with mean nl((i_l) and variancer, chosen by the user, so that the
algorithm performs a random-walk algorithm. This is mati@dby the fact that,
as the peak exists, we aim at defining precisely its locasomall perturbations

around the current value allow to refine it;

« otherwise, ifgx = 0, we do not dispose of any information to determine the looat
of a peak, then the proposal distribution is uniforthj \;. The interest is to update
the absent peak location and explore the entire space. Xpiagie why an absent
peak location is not zero.



So, the proposal distribution for the algorithm is:

A(Fik) = So(ak) Uy n + 31 (A AN (Y ry).

gk is distributed according to a Bernoulli distribution whilg is distributed according
to either a Dirac @k = 0) or a positive Gaussian distributiog(= 1). In the last case,
several methods for positive normal variables simulatiamehbeen proposed [12, 13,
14]t. Again, a random-walk Metropolis Hastings algorithm isgwsed to sampls.
The proposal distribution is a positive Gaussian whoseaumag is chosen by the user.
At last, classical methods allow to simulate the hyperp&tanposteriors (sexg.[12]).

4. LABEL SWITCHING

The expected a posteriori estimator is natural to implerfrent a Markov chain, but its
calculation is sometimes less straightforward that mighekpected: this is due to the
so-called “label-switching problem” [9, 15]. It is a commbant difficult problem due
to two phenomena: on the one hand, if there is not enoughnv#tion to distinguish
the variables, then the posterior distribution is the saareeich permutation of the
variable indexX. Thus, it is impossible to distinguish two peaks, and theawvtmid them
to permute. On the other hand, the MCMC method does not avisidsihce it is able to
explore thek! permutation possibilities (to some extent, the labeltsining is evidence
of good mixing).

Itis now accepted that imposing atentifiability constrain{6] on parameters (for ex-
ample:ny < --- < nk,,,,) can be inefficient to suppress the symmetry of the distiobut
Relabelling algorithmg9, 16] consist in an iterative algorithm which choose, athea
iteration, the permutation which minimizes a loss functidhlast, Celeuxet al. [17]
propose to minimize &bel invariant cost functionusing simulated annealing.

As in [9, 16], we consider a relabelling algorithm by minimnig the following cost
function:

Kmax

Lo(N, W, S, Un, P, b, P s, Ps) = — N | [T ALkl Bk, Prie) AWl Fhwie, Pn) AL (S| sics Psie) | -
k=1

(21)
The goal is to choose the hyperparamet@is,, i, Hsx) and (Png, Pwi, Psi) 10 Min-
imise the function. At initialisation, the peak number isimsited in the sense of the
MMAP (marginalized maximum a posteriori). The followingas iterative procedure
onk=1,...,KMMAP Wwe propose an alternative to general relabelling algorththe
differences are threefold:

« first, a previous estimation is obtained by selecting theimaxn the histogram of
(Un, lw, Us) (each dimension representing an interest parametegr;in our case,

1 The algorithm proposed in [14] is available for freénat p: / / ww. i ri s. cr an. uhp- nancy. fr/
francai s/ si/ Personnes/ Perso_Mazet/rpnormen. ht m



we have a 3D histogram). This first estimation provides atiairgation closer to
the global optimum than a simple identity permutation;

» second, we do not try to choose the permutation to minimjzénstead, we prefer
to relabel the sampled valué¢s|,w;,s) at each iteration one after the other, by
seeking, for each iteration, which one is the closest to thkegram maximum.
This procedure comes down to minimize the cost-functigptoo. Then, parameters
(Mg, Mwic; Msi) @nd (Pny, Pwk, Psk) are updated by minimizing equation (21);

- at last, the proposed approach take into account the facthtegpeak number is

expected to change since the search is made only on peakmmqﬁ) =1.

Then the estimated peak has parametgsg, b, Ksk).- The algorithm start again till
k= KMMAP after fixing to zero the occurrences of the selected peakigiag to select
them again. There is not yet a mathematical background ferntiethod, but all the
experiences show that the estimation is satisfactory.

5. APPLICATION

In this section, we present an application of the proposetthodeon a part of a Raman
spectrum of gibbsite Al(OH) We have performed 10,000 iterations with a burn-in
period of 5,000 iterations, an initial spectrum with no peakd the following initial
valuesA =0.5,ry, = 10,re = 0.1. The estimation is shown on figure 1. The results were
validated by chemists. They are really satisfactory for te@asons: first, the peaks are
mostly reproduced at each simulation (only one is presdmes), second, the estimated
peaks are physically significant. However, some real pesks@netimes estimated by
several onesg.g.around 710 cm?! or 900 cnTl). In the last case, this must be due to
the natural asymmetry of the real peaks.
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FIGURE 1. Decomposition of a real Raman spectrum and the reconstrsijaal.



6. CONCLUSION

In conclusion, we have proposed a method of signal decotiposnto elementary
pattern which appears as an alternative to blind decorieolu& marked point process
reveals outstanding results since it is able to set the pealks continuous space and
to estimate them with different shapes. This approach peddetter than a classical
deconvolution approach where the peaks have inevitablyséimnee width and is also
faster than usual methods with a BG model. An alternative to®VI@ is also proposed
by considering a constant order model and adding a new Vargalaing the existence
of the peaks. At last, we propose a new method of label switchi
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