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Abstract. We consider the problem of estimating the peak parameters ina spectroscopic signal,
i.e. their locations, amplitudes and form parameters. A marked point process provides a suitable
representation for this phenomenon: it consists in modeling the spectrum as a noisy sum of points
lying in the observation space and characterized by their locations and some marks (amplitude
and widths). A non-supervised Bayesian approach coupled with MCMC methods is retained to
solve the problem. But the peak number is unknown. Rather than using a method for model
uncertainty (such as RJMCMC) we propose an approach in whichthe dimension model is constant:
consequently, the Gibbs sampler appears possible and natural. The idea consists in considering an
upper bound for peak number and modelling the peak occurrence by a Bernoulli distribution. At
last, a label switching method adapted to the approach is also proposed. The method is illustrated
by an application on a real spectrum.
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1. INTRODUCTION

We consider the problem of estimating the peak parameters ina spectroscopic signal
(a peak spectrum),i.e. their locations, amplitudes and widths. The goal is to analyse
a chemical spectra to provide an interpretation for physico-chemists. The proposed
approach may be used for many kinds of spectra (Raman, infrared, fluorescence, etc.),
needing only a parametric form to model the peaks.

This is typically an ill-posed problem, justifying the use of a Bayesian approach, as
retained in previous works. In [1], the optimisation is doneeither with a modified version
of Newton-Raphson’s algorithm or an accept-reject like algorithm; yet, these methods
may yield to a local minimum and the estimation of peak numberis not optimal. MCMC
(Monte Carlo Markov chain) methods are now preferred [2, 3, 4]. In these works, an
RJMCMC (reversible jump MCMC) algorithm [5, 6] is used to estimate the variables.

In this paper, the proposed method is also set in a Bayesian approach coupled with an
MCMC method. The main originality results from the use of a constant dimension model
avoiding to use the RJMCMC algorithm. The paper is organised asfollows. Section 2



defines the marked point process used to model the signal. In section 3, we propose the
model to keep a constant variable number, which allows to usethe Gibbs sampler. Then
we present prior distributions for each variable and compute the posterior distributions.
At last, simulation methods are proposed. Because of the label-switching problem, the
estimation computation may not be straightforward. So, a new method to deal with this
problem is presented in section 4. In section 5, the proposedmethod is supplied on a real
Raman spectrum and, finally, section 6 concludes the paper.

2. PROBLEM FORMULATION

A first approach would be to consider the chemical spectrum asthe convolution of a
sparse spike train and a pattern representing the peak form.A marked point process
(MPP) provides a suitable representation for the considered problem: it consists in a
finite set of objects lying in a bounded space and characterized by their locations and
some marks. So, the Bernoulli-Gaussian (BG) process [7, 8] is awidespread model for
the sparse spike train; it is a MPP with only one mark corresponding to the amplitudes.
Considering that the pattern is unknown, the problem becomesa blind deconvolution
problem.

However, the common implementation of this model with MCMC methods is not
efficient (see [8]) since it implies to estimate a great number of variables (each sample
of the signal), though the majority is zero! Furthermore, the model suffers from two
drawbacks: the peaks are inevitably located on discrete positions in the grid and they
have the same shape, which is not always true in real chemicalspectra.

To bypass these problems, we propose to model the spectrumy as a noisy sum ofK
positive peaksf:

y =
K

∑
k=1

f(nk,wk,sk)+ e (1)

where nk, wk and sk (k ∈ {1, . . . ,K}) stand respectively for the location, amplitude
and width of thekth peak,f is a vector function of lengthN, ande is a N× 1 vector
corresponding to the noise and model errors. We consider a Lorentzian shape for the
peaks which is usual in Raman spectroscopy and allows to simplify the presentation
in this paper since it has only one form parameter. Then, thekth peak amplitude at
wavenumbern is:

fn(nk,wk,sk) = wk
s2
k

s2
k +(n−nk)2

. (2)

Of course, the method can be adapted to other shapes, like Gaussian or Voigt functions.
There is a substantial gain when modeling peaks as a known parametric expression
rather than a non-parametric shape since it introduces available information, restricting
the solution space consequently. This new MPP considers thesignal as a finite set of
Lorentzian whose marks are the amplitudes and widths.

The considered problem has similarities with the problem ofmixture analysis [6, 9],
as for example the common choice of MCMC methods for optimization or the label
switching problem. Nevertheless, in the considered problem, we estimate the peaks in
the data themselves and not in the data distribution.



3. PROPOSED MODEL

3.1. A Constant Dimension Model

Thanks to the likelihood factorization, the Gibbs sampler appears easy and natural to
use. But the peak number is unknown, as a result of which the system order is likely
to change and the variable number too. In this case, classical MCMC methods (such
as Metropolis-Hastings algorithm or Gibbs sampler) can notbe applied because the
posterior is not stationary. For ten years, new MCMC techniques for model uncertainty
have been proposed [10, 11]. The most famous is the RJMCMC algorithm [5, 6].
However, we propose another model in which the system order is constant, allowing
to use Gibbs sampler.

The idea is to consider the peak number constant and equal toKmax corresponding
to an upper bound greater than the real peak number and fixed bythe user. To avoid to
obtain an estimated signal withKmax peaks, we are inspired by the Bernoulli-Gaussian
model and introduce the vectorq ∈ {0,1}Kmax coding the peak occurrences. Thus, for all
k∈ {1, . . . ,Kmax}:

• if qk = 1 then thekth peak is present and located atnk with amplitudewk and width
sk;

• on the contrary, ifqk = 0, thekth peak is not present: it does not appear in the
signal. Its amplitudewk is set to zero but not its location and width: this choice is
motivated by the simulation method (see section 3.4).

Being still inspired by the BG model, the peak occurrencesqk are distributed according
to a Bernoulli distribution with parameterλ. Equation (1) reads then:

y =
Kmax

∑
k=1

f(nk,wk,sk)+ e, (3)

where, of course,wk = 0 if and only if qk = 0. In matrix form, we then have:

y = Gw+ e (4)

whereG is theN×Kmax matrix :

G =
(

f(n1,1,s1) · · · f(nKmax,1,sKmax)
)

(5)

The variable number is then smaller than a common BG implementation (as in [8])
in which one has to calculateN variables to estimate the sparse spike train, though the
present model needs only 3Kmax variables (n, q, andw). Indeed, one can reasonably
suppose that 3Kmax< N, that is there is less thanN/3 peaks in the signal. Consequently,
the method will be faster (considering an equivalent time for each variable simulation in
the Gibbs sampler) and the estimation quality will be better(there is less unknowns for
the same data number).



3.2. Prior distributions

Noise. We choose the classical model of a white, Gaussian and i.i.d.noise with
variancere:

e ∼ N (0, reI). (6)

Peak Location. A priori, we do not have any information about the peak location.
For this reason, we suppose that the peaks are uniformly distributed on[1,N]:

∀k∈ {1, . . . ,Kmax}, nk ∼ U[1,N]. (7)

Peak Amplitude. As we said in the previous section,(q,w) is modelled as a BG
process; in addition, the amplitudes are positive. Therefore, we have∀k∈ {1, . . . ,Kmax}:

qk ∼ Ber(λ), (8)

wk|qk ∼

{
δ0(wk) if qk = 0,
N +(0, rw) if qk = 1.

(9)

whereBer stands for a Bernoulli distribution,δ0 denotes a Dirac centered in zero and
N + stands for a Gaussian distribution with positive support. Of course, another prior for
amplitudes could be used. For example, a Gamma distributionseems efficient, but the
advantages of a normal distribution with positive support are twofold: first, it yields a
normal posterior distribution which is easily simulable; second, it can be easily adapted
to other applications where the peaks can have positive and negative peaks.

Peak Width. In Raman spectroscopy, it is known that peaks have a FWHH (full
width at half height, equals to twice the peak width) of 12±5 cm−1. Therefore, an
inverse gamma distribution is proposed whose mean and variance are equal to 6 cm−1

and 2.5 cm−1 respectively:
sk ∼ I G(αs,βs) (10)

where
αs = 16.4, βs = 82.

Bernoulli parameter. To avoid a degenerative behaviour when the peak number is
too low, a conjugate prior (beta distribution) which penalizes high values is chosen:

λ ∼ Be(1,Kmax+1). (11)

Peak Amplitude Variance.Without any prior onrw, its posterior distribution may
not be defined whenK ≤ 2. To avoid this, we choose the following conjugate prior:

rw ∼ I G(αw,βw). (12)

This prior is chosen to avoid numerical errors, but not to influence the estimation result;
so, it has to be the less informative as possible. In the sequel, we suppose that the signal
is multiplied by a constant in order to fix roughly the peak amplitude peak to a value
close to 1. Then, we propose the following values forαw andβw:

αw = 2+ ε, βw = 1+ ε, and ε ≪ 1



Noise variance. Because of the lack of information aboutre, we opt for the tradi-
tional Jeffreys prior:

re ∼ 1/re. (13)

3.3. Conditional Posterior distributions

Then, the conditional posterior distributions are computed:

nk| . . . ∼ exp

(
−

∣∣∣
∣∣∣y−∑Kmax

l=1 f(nl ,wl ,sl )
∣∣∣
∣∣∣
2
/2re

)
1[1,N](nk), (14)

qk| . . . ∼ Ber(λk), (15)

wk| . . . ∼

{
δ0(wk) if qk = 0,
N +(µk,ρk) if qk = 1,

(16)

sk| . . . ∼ exp

(
−

1
2re

∣∣∣
∣∣∣y−∑Kmax

l=1 f(nl ,wl ,sl )
∣∣∣
∣∣∣
2
−βs/sk

)
1

sαs+1
k

1R+(sk), (17)

λ| . . . ∼ Be
(
K +1,2Kmax−K +1

)
, (18)

rw| . . . ∼ I G
(
K/2+αw,wTw/2+βw

)
, (19)

re| . . . ∼ I G

(
N/2,

∣∣∣
∣∣∣y−∑Kmax

l=1 f(nl ,wl ,sl )
∣∣∣
∣∣∣
2
/2

)
, (20)

whereK denotes the number of present peaks (i.e. K = ∑K
k=1qk) and:

λk =

[
1+

1−λ
λ

√
rw

ρk
exp

(
−

µ2
k

2ρk

)]−1

, µk =
ρk

re
zT
−kf(nk,1,sk),

ρk =
rwre

re + rwf(nk,1,sk)Tf(nk,1,sk)
, z−k = y−∑Kmax

l=1,l 6=kf(nl ,wl ,sl ).

3.4. Variable Simulation

The simulation ofnk is provided using a Metropolis-Hastings algorithm. To improve
the convergence, we separate the two following cases:

• if qk = 1, the proposal distribution is a Gaussian (with bounded support since

nk ∈ [1,N]) with meann(i−1)
k and variancern chosen by the user, so that the

algorithm performs a random-walk algorithm. This is motivated by the fact that,
as the peak exists, we aim at defining precisely its location:small perturbations
around the current value allow to refine it;

• otherwise, ifqk = 0, we do not dispose of any information to determine the location
of a peak, then the proposal distribution is uniform:U[1,N]. The interest is to update
the absent peak location and explore the entire space. This explain why an absent
peak location is not zero.



So, the proposal distribution for the algorithm is:

q(ñk) = δ0(qk)U[1,N] +δ1(qk)N
[1,N](n(i−1)

k , rn).

qk is distributed according to a Bernoulli distribution whilewk is distributed according
to either a Dirac (qk = 0) or a positive Gaussian distribution (qk = 1). In the last case,
several methods for positive normal variables simulation have been proposed [12, 13,
14]1. Again, a random-walk Metropolis Hastings algorithm is proposed to samplesk.
The proposal distribution is a positive Gaussian whose variance is chosen by the user.
At last, classical methods allow to simulate the hyperparameter posteriors (seee.g.[12]).

4. LABEL SWITCHING

The expected a posteriori estimator is natural to implementfrom a Markov chain, but its
calculation is sometimes less straightforward that might be expected: this is due to the
so-called “label-switching problem” [9, 15]. It is a commonbut difficult problem due
to two phenomena: on the one hand, if there is not enough information to distinguish
the variables, then the posterior distribution is the same for each permutation of the
variable indexk. Thus, it is impossible to distinguish two peaks, and then toavoid them
to permute. On the other hand, the MCMC method does not avoid this, since it is able to
explore thek! permutation possibilities (to some extent, the label-switching is evidence
of good mixing).

It is now accepted that imposing anidentifiability constraint[6] on parameters (for ex-
ample:n1 < · · · < nKmax) can be inefficient to suppress the symmetry of the distribution.
Relabelling algorithms[9, 16] consist in an iterative algorithm which choose, at each
iteration, the permutation which minimizes a loss function. At last, Celeuxet al. [17]
propose to minimize alabel invariant cost function, using simulated annealing.

As in [9, 16], we consider a relabelling algorithm by minimizing the following cost
function:

L0(n,w,s,µn,ρn,µw,ρw,µs,ρs)=− ln

[
Kmax

∏
k=1

N (nk|µnk,ρnk)N (wk|µwk,ρwk)N (sk|µsk,ρsk)

]
.

(21)
The goal is to choose the hyperparameters(µnk,µwk,µsk) and (ρnk,ρwk,ρsk) to min-
imise the function. At initialisation, the peak number is estimated in the sense of the
MMAP (marginalized maximum a posteriori). The following isan iterative procedure
on k = 1, . . . , K̂MMAP. We propose an alternative to general relabelling algorithms; the
differences are threefold:

• first, a previous estimation is obtained by selecting the maxima in the histogram of
(µn,µw,µs) (each dimension representing an interest parameter;e.g., in our case,

1 The algorithm proposed in [14] is available for free athttp://www.iris.cran.uhp-nancy.fr/
francais/si/Personnes/Perso_Mazet/rpnorm-en.htm.



we have a 3D histogram). This first estimation provides an initialisation closer to
the global optimum than a simple identity permutation;

• second, we do not try to choose the permutation to minimizeL0. Instead, we prefer
to relabel the sampled values(nl ,wl ,sl ) at each iteration one after the other, by
seeking, for each iteration, which one is the closest to the histogram maximum.
This procedure comes down to minimize the cost-functionL0 too. Then, parameters
(µnk,µwk,µsk) and(ρnk,ρwk,ρsk) are updated by minimizing equation (21);

• at last, the proposed approach take into account the fact that the peak number is

expected to change since the search is made only on peaks suchthatq(i)
l = 1.

Then the estimated peak has parameters(µnk,µwk,µsk). The algorithm start again till
k = K̂MMAP , after fixing to zero the occurrences of the selected peaks, avoiding to select
them again. There is not yet a mathematical background for this method, but all the
experiences show that the estimation is satisfactory.

5. APPLICATION

In this section, we present an application of the proposed method on a part of a Raman
spectrum of gibbsite Al(OH)3. We have performed 10,000 iterations with a burn-in
period of 5,000 iterations, an initial spectrum with no peak, and the following initial
values:λ = 0.5, rw = 10,re = 0.1. The estimation is shown on figure 1. The results were
validated by chemists. They are really satisfactory for tworeasons: first, the peaks are
mostly reproduced at each simulation (only one is presentedhere), second, the estimated
peaks are physically significant. However, some real peaks are sometimes estimated by
several ones,e.g.around 710 cm−1 or 900 cm−1). In the last case, this must be due to
the natural asymmetry of the real peaks.
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FIGURE 1. Decomposition of a real Raman spectrum and the reconstructed signal.



6. CONCLUSION

In conclusion, we have proposed a method of signal decomposition into elementary
pattern which appears as an alternative to blind deconvolution. A marked point process
reveals outstanding results since it is able to set the peakson a continuous space and
to estimate them with different shapes. This approach performs better than a classical
deconvolution approach where the peaks have inevitably thesame width and is also
faster than usual methods with a BG model. An alternative to RJMCMC is also proposed
by considering a constant order model and adding a new variable coding the existence
of the peaks. At last, we propose a new method of label switching.
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