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Abstract. We propose to analyse a general statistical image partitioning into homogeneous regions.
This method is based on a polygonal grid which can have an arbitrary topology and whose number
of region and regularity of its boundaries are obtained by minimizing of the stochastic complexity
of the image. It thus leads to optimize a criterion that can be expressed as the sum of two terms: a
likelihood term and a regularization term. This criterion, whose two terms are elements of a global
entropy and are expressed in the same unit, does not contain any parameter to be tuned by the user.
We analyse the performance of this approach in comparison with a more standard formulation for
which there is a weighting parameter between the likelihood and the regularization terms analogous
to the one used in snake-based techniques.
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INTRODUCTION

Image segmentation is a topic of growing interest in computer vision and image process-
ing and has numerous applications. The sensors used to obtain these images can thus be
of various types and can lead to images corrupted with different noise models: Gaussian,
Gamma, Poisson, ... It is therefore important to take into account the physical nature of
the images in statistical techniques for image segmentation.

Snake-based segmentation techniques generally depend on the minimization of a
criterion that is the sum of two energies: an external energy, that is based on the grey
levels of the image and on a statistical model, and an internal energy, that allows one to
regularize the boundaries of the regions of the image. Most of the developed statistical
segmentation techniques are based on a Bayesian formulation of the statistical model
which generally leads to the optimization of a criterion that has at least one parameter to
be tuned by the user. It is the case of the Markov Random Fields (MRF) approaches [1],
[2], [3], [4] that introduce regularization parameters that cannot be easily determined
automatically and which can leads to difficult optimization problems. It is also the
case of variational methods [5], [6], [7], [8]. With deformable models, the desirable
properties such as continuity and smoothness of the contours are enforced by introducing
regularization terms in the functional to optimize. The situation is thus analogous to
the one obtained with MRF approaches since parameters are in general present in the
criterion to optimize.

Reducing the number of free parameters in the criterion to optimize thus appears
as one of the key problems in image segmentation. The Stochastic Complexity (SC)



minimization principle, introduced by Rissanen [9], [10] has been early used to adress
the issue of parameter estimation. Based on information theory, this principle allows
one to estimate the number of needed parameters for parametric description of observed
data. In the context of image segmentation, the estimation of the number of needed
parameters for parametric description of observed data can be an interesting alternative
to the introduction of regularization terms.

Leclerc [11] first proposed to apply this approach to optical image segmentation.
Then, Zhu and Yuille [12] proposed a region competition algorithm deduced from a
MDL criterion. Their approach allows one to segment complex images. However this
technique is based on a Bayesian framework and contains free parameters in the energy
criterion. Figueiredo et al. [13] demonstrated that the SC principle can be successfully
applied to B-spline snake-based models with Gaussian or Rayleigh noise. These results
have been generalized to polygonal snake [14] and to level set implementation [15].
Finally, a new approach of SAR image partitioning into homogeneous regions has been
proposed by Galland et al. [16]. This algorithm is based on a polygonal grid whose
number of region, number of nodes and position of nodes are automatically estimated
by minimizing the SC of the image. This technique has been then generalized to other
PDF of the exponential family [17].

Although these techniques provide interesting results, they have some limitations.
Indeed, they need a priori knowledge of the family of the PDF of the image grey levels.
In this paper, we analyse a generalization of the approach introduced in [16] to images
with unknown noise model for which a parametric model of grey level’s fluctuations is
not available. The homogeneous partitioning is based on a deformable partition defined
by a polygonal grid which can have an arbitrary topology and is obtained by minimizing
the SC complexity of the image which is a criterion without parameter to be tuned by the
user. We analyse quantitatively on a synthetic image and qualitatively on a real image the
relevance of this approach compared to Bayesian techniques which generally introduce
regularization parameters to balance the weight of the different terms that compose the
criterion.

STOCHASTIC COMPLEXITY BASED ALGORITHM

Our goal is to estimate the partition of the image which contains R regions. In each
region of the image, we assume that the pixel intensities are quantized on M levels
(for example M = 256) and are realizations of independent and identically distributed
random variables with PDF Pr. The SC ∆ of the image, which is an approximation of
the number of bits needed to describe the image, given the partition and the statistical
model, can be expressed as the sum of two terms [10]: a likelihood term ∆L which is
equivalent to the external energy of the snake-based approach and a regularization term
∆M which is equivalent to the internal energy. One thus obtains:

∆ = ∆L +∆M. (1)

Given a partition and the PDF Pr in each region of the image, ∆L is the number of bits
needed to describe the grey levels of the image. For that purpose, the PDF are estimated
with irregular step functions of order Q as shown on figure 1. For a fixed value of Q, the



parameters of a step function are the width b j of the bin number j and the probability
pr( j) of observing a grey level in the bin number j, for all j ∈ [1,Q]. The values of Q
and of the b j are chosen to be the same for all the regions of the image. The expression
of ∆L is provided in [18].
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FIGURE 1. Illustation of the estimation of a grey level distribution defined on M = 81 grey levels
(dashed line) with a step function of order Q = 5 and with b1 = 20, b2 = 40, b3 = 10, b4 = 5 and b5 = 6
(solid line).

∆M is the sum of the code lenght needed to describe the PDF of each region and the
code length needed to describe the partition of the image. The expression of the length
of the encoding of the PDF is given in [18]. The partition is specified with a polygonal
active grid (i.e. a set of nodes linked by segments). This grid allows us to get a partition in
an arbitrary number of regions and with arbitrary topologies. The length of its encoding
is given in [16].

OPTIMIZATION PROCEDURE

The optimal partition Πopt, which is the parameter of interest and which depends on the
number of steps Q and the widths of the steps b j that are nuisance parameters, is obtained
by minimizing ∆. The proposed optimization algorithm, that allows one to estimate the
partition and the nuisance parameters, is based on three stages as shown on figure 2.

Stage 1: first estimation of the partition

For that purpose, we perform the convergence procedure of the grid described in [16]
using step functions of order Q0 = 10 and with bins of equal length and starting with an
initial regular grid Π0. The results obtained at the end of this stage are shown on figure
3.

Stage 2: estimation of Q and the b j

For that purpose we initialize the steps functions with Q = M and b j = 1 for all
j ∈ [1,Q]. Given the estimated partition of stage 1, we then evaluate the SC ∆ obtained
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FIGURE 2. Description of the three stage algorithm. The three stages are written in bold font symbol.
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FIGURE 3. Stage 1 of the three stages algorithm. (a) synthetic image with the numeration of its regions
- (b) noisy version quantized on M = 81 grey levels with random grey levels distributed with step functions
of order Q = 5 with b1 = 20, b2 = 40, b3 = 10, b4 = 5 and b5 = 6 - (c) starting grid - (d) partition obtained
at the end of stage 1 with Q0 = 10.

after each fusion of two adjacent bins j and j +1 and we choose the fusion which leads
to the greatest decrease of ∆. This fusion provides a new bin of width b j + b j+1 so that
the probability of observing a grey level in this bin is pr( j)+ pr( j +1). One iterates this
procedure so that the order Q decreases from Q = M to Q = 2. The order Qopt and the
corresponding bopt

j which minimize ∆ are finally selected (figure 4).
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FIGURE 4. Stage 2: estimation of Q and the b j. (αi) initialization of the step functions on region
number i with Q = M and b j = 1 - (βi) result on region number i obtained after the fusion procedure. One
obtains Qopt = 5 with bopt

1 = 20, bopt
2 = 40, bopt

3 = 10, bopt
4 = 5 and bopt

5 = 6.



Stage 3: final estimation of the partition

With the estimated parameters Qopt and the bopt
j , a final convergence procedure of the

grid is applied (figure 5). Since it is easy to be trapped in a local minimum, the initial grid
of this stage is the same as in the first stage. One can see on the last figure the importance
of the second convergence which allows us to correct some details of the boundaries
between regions (the boundary between region 2 and 4 for example) that were not
correctly detected with the first convergence. Indeed, the number of misclassified pixels
(NMP) [19], which is a measure for evaluating the quality of the partition is equal to 29
at the end of stage 1 and is equal to 0 at the end of stage 3.

(a) (b)

FIGURE 5. Stage 3: final estimation of the partition. (a) starting grid - (b) partition obtained after
the second convergence of the polygonal active grid and using step functions whose parameters have been
estimated at stage 2.

RELEVANCE OF THE STOCHASTIC COMPLEXITY BASED
CRITERION

The specificity of the SC is to provide a criterion without parameter to be tuned, contrary
to Bayesian approachs. Indeed, in Bayesian techniques, like those proposed by Mumford
and Shah [6] or Zhu and Yuille [12], regularization parameters are introduced in the
functional to optimize in order to enforce continuity and smoothness of the contours. In
the criterion based on the SC, the two terms (the likelihood term and the regularization
term) used to describe the image are elements of a global entropy and are expressed in
a common unit, namely the bit. Consequently, these terms do not need any parameter to
balance their weight.

In order to analyse the efficiency of the proposed approach, we have added a regular-
ization parameter λ in the proposed criterion which leads to the following new criterion:

∆(λ ) = λ∆L +(1−λ )∆M. (2)

We have then applied the three stage algorithm on the synthetic image of figure 6 by
optimizing ∆(λ ) for different values of λ . It is thus equivalent to put more (λ > 0.5) ou
less (λ < 0.5) weight in the likelihood term in comparison with the regularization term.
We show on this figure the evolution of the NMP as a function of λ . The performances
are clearly optimal for λ = 0.5, which correspond to optimizing the SC of the image.
These results show that if one wants to improve the quality of the partition obtained with
the SC based criterion by introducing a regularization parameter λ , the estimation of this
parameter, i.e. the value of λ which minimize the NMP, leads to the SC based criterion.
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FIGURE 6. Number of misclassified pixels NMP (c), estimated on 50 realizations of gaussian noise,
gamma noise and poisson noise (b) of synthetic image (a), obtained after the three stage algorithm but
using the criterion ∆(λ ), as a function of λ .
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FIGURE 7. Partitioning results of a SAR agricultural image from Ukraine obtained by the ERS-
1 satellite (provided by the CNES and distributed by the ESA). The results have been obtained by
minimizing the criterion ∆(λ ) for three different values of λ : 0.1, 0.5 and 0.9.

This result thus emphasizes the fact that minimizing the SC based criterion corresponds
to minimizing a global entropy which does not need any parameter to be tuned by the
user.

We illustrate this point on the real SAR agricultural image of figure 7. We show
partitioning results obtained by optimizing ∆(λ ) for three different values of λ : 0.1,
0.5 and 0.9. We can see on this figure that the more satisfactory result is obtained with



λ = 0.5, i.e. with the SC based criterion.

CONCLUSION

We have analysed a general statistical technique for image partitioning into homoge-
neous regions based on the SC minimization principle. This principe allows us to obtain
a method based on the optimization of a criterion that does not need ad hoc parameters to
be tuned by the user. We have analysed the performance of this approach in comparison
with a Bayesian formulation for which a weighting parameter is generally introduced
between the likelihood and the regularization terms analogous to the one used in snake-
based techniques.
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