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Abstract

The concepts of weighted distributions have been introduced by Rao (1965). A weighted
function will be denoted by w(x) and g(x, θ) = w(x)f(x,θ)

E(w(X) where Eθ(w(X)) =
∫

D
w(x)dF (x),

and f(., θ) is the distribution of random variable X and g is the pdf of the weighted distribu-
tion.

Characterization results for the residual information measures are given here in view of the
weighted distributions. We also derive relationship among residual information measures and
reliability measures such as hazard rate.The residual divergence between two positive random
variables are studied and finding link results relevant to information theory and reliability
theory. Some examples that lead us to results related to information measures are derived for
order statistics, record value, proportional hazard, proportional reversed hazard, Lorenz curve
and hazard rate as special cases of weighted families.

Ebrahimi and Kirmani(1996) defined the uncertainty of residual lifetime distributions, then
Asadi et. al. (2005) obtained some results related to minimum dynamic discrimination infor-
mation and maximum dynamic entropy models.We obtain results concerning their relations
with life distributions and information measures and give some examples for weighted fami-
lies. Some inequalities, relations and partial ordering for weighted reliability measures are also
presented.

Keywords: Information Measures, Residual Entropy, Weighted Family, Residual Kullback-
Leibler Information, Residual Hellinger Distances, Residual Information Measures, Cumulative
Residual Entropy, Characterization.

1 Introduction

After the creation of C. E. Shannon (1948), a number of research papers, and monographs
discussing and extending Shannon’s original work have appeared. Among them Dragomir (2003),
Kagan, Linnik & Rao (1973), and Kullback (1959) are using and extending results due to informa-
tion measures. Recently proposed a dynamic measure based on differential geometry applicable
to residual life time. This measure has been used for the classification and ordering of survival
function. Ebrahimi & Kirmani (1996), Nanda et al (2006) and Asadi et al (2005) gave an overview
of some aspects of residual Renyi divergence and residual Kullback-Leibler information and resid-
ual entropy. Further implications and properties of the dynamic measures such as above and the
uncertainty ordering, proportional hazard model through a measure of discrimination between
two residual life distributions on the basis of the measures that are mentioned are obtained by at
least one of the above references.

In this paper, characterization results for residual entropy, residual information measures are
obtained. Link between these type of information measures, reliability measures and weighted
families are derived. Examples for some special cases is another direction of this work.
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2 Preliminaries

Let (Ω,B, µ) be a measure space and f be a measurable function from Ω to [0,∞), such that∫
Ω fdµ = 1. The Shannon entropy (or simply the entropy) of f relative to µ, is defined by

H(f, µ) = −
∫
Ω
f ln fdµ, (with f ln f = 0 if f = 0), (1)

and assumed to be defined for which f ln f is integrable. If X is an r.v. with pdf f, then we
refer to H as the entropy of X and denotes also it by the notation HX . In the case µ is a
version of counting measure, (1) leads us to a specialized version that introduced by Shannon
(1948) as HX = −

∑n
i=1 pi ln pi where pi ≥ 0 and

∑n
i=1 pi = 1. One of the important issues in

many applications of probability theory is finding an appropriate measure of distance between
two probability distributions. A number of divergence measure for this purpose have been studied
in a lot of references related to various type of information measures such as Dragomir (2003).
These measures have applied in a variety of fields. Consider F and G be two distributions which
are absolutely continuous w.r.t. measure µ and dF

dµ = f and dG
dµ = g. We have the following

definitions:
Kullback Leibler Information :

DKL(F,G) =
∫

χ
ln
f(x)
g(x)

f(x)dµ. (2)

χ2− Divergence :

Dχ2(F,G) =
∫

χ

[f(x)− g(x)]2

f(x)
dµ. (3)

Bhattacharyya Distance and Hellinger Distance:

DBh(F,G) =
∫

χ

√
g(x)f(x)dµ,DH(F,G) = 2[1−DBh(F,G)]. (4)

α−Divergence :

Dα(F,G) =
1

1− α2

∫
χ
{1− g

1+α
2 (x)

f
1+α

2 (x)
}2f(x)dµ, (5)

The following results are related to the above measures :

• It is easy to see that DH(F,G) ≤ 2. Via Taylor expansion and approximation, we can get,
DKL(F,G) ≈ 1

2Dχ2(F,G), DJ(F,G) ≈ 1
2 [Dχ2(F,G) +Dχ2(G,F )], Dχ2(F,G) ≈ 4DH(F,G)

and Dχ2(F,G) ≥ DH(F,G).

• Sometimes we are interested in the distances that is introduced in (2) to (5), between the
distributions F = Fθ1 and G = Fθ2 . Between the corresponding samples distributions which
we denote Fn

θ1
and Fn

θ2
, the distances are meaningful for arbitrary distributions and have no

relation to the nature of spaces.

• The chi-squared divergence Dχ2(F,G) = 2Dα(F,G) on taking α = −3 in (5). Also, the
Hellinger distance DH(F,G) = 1

2Dα(F,G) on taking α = 0 in (5). The Hellinger distance
and Bhattacharyya distance are symmetric and has all properties of metric.

The relative information generating function of f given the reference measure g is defined as,

R(F,G, γ) =
∫

χ
(
f

g
(x))γ−1f(x)dx, (6)

where γ ≥ 1 and the integral is convergent on noting that R(F,G, 1) = 1. In particular, R′(F,G, 1)
is just Kullback Leibler information, and −R′(F, 1, 1) and R(F, 1, 2) are Shannon entropy and
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second order entropy respectively.
The power divergence measure (PWD) which gathers most of the interesting specification is

indexed by

PWD(F,G, λ) =
1

λ(λ+ 1)

∫
χ
{[f(x)
g(x)

]λ − 1}f(x)dµ, (7)

The power divergence family implies different well-known divergence measures for different values
of λ. PWD for λ = −2,−1,−.5, 0, 1, implies Neyman Chi-square, Kullback Leibler, squared
Hellinger distance, Likelihood disparity and Pearson Chi-square divergence respectively. Note
that PWD(F,G, λ) = 1

λ(λ+1) [R(F,G, λ+ 1)− 1].

3 Information Measures in view of the Weighted Families

On considering weighted function w(x, β) which is a non-negative function with parameter β
represent a family of distributions with pdf, g(x, β, θ) = w(x,β)f(x,θ)

E[w(X,β)] , which is called a weighted
version of distribution. w(x, β) = x is called sized-biased distribution. Order statistics, record
value, residual lifetime of a stationary renewal process, selection samples, hazard rate, reversed
hazard rate, proportional hazard model, reversed proportional hazard model, Lorenz curve and
probability weighted moments are some special cases of weighted families. Among them, we
will concentrate on order statistics, record values and some special cases of probability weighted
moments in some information measures.

We can consider f1(x) = w1(x)f(x)
Ew1(X) and g1(x) = w2(x)f(x)

Ew2(X) as the weighted distributions of f
(see Rao 1965). Note that all the expectations are w.r.t pdf f . Then, for the above measures the
following results are important and noticeable :

For the order statistics distributions, we consider w1(x) = 1
β(i,n−i+1) [F (x)]i−1[1−F (x)]n−i and

w2(x) = 1
β(j,n−j+1) [F (x)]j−1[1− F (x)]n−j , hence

• DKL is increasing function of n, for i = j + 1, it is increasing for j > n
2 and decreasing for

j < n
2 when w1(x) = 1. Dχ2 for w1(x) = 1 and (j = 1 and j = n ) is increasing function of

n.

• DBh is increasing function of n, In the case that i = j+1, j = 1 and j = n− 1 lead us to an
decreasing and increasing function of n respectively. DH is decreasing function of n, In the
case that i = j + 1, j = 1 and j = n− 1 lead us to an increasing and decreasing function of
n respectively.

• For the order statistics distributions that mentioned, we have the relative information gen-
erating function when i = 1, is increasing function of γ ≥ 1, decreasing function of n.

• It is clear that i = j is equivalent to w1(x) = w2(x) for ∀x, hence,R(F1, G1, w, w, f, γ) =
n−i

Γ(n+1) which is not depending on γ, decreasing function of n and i.

• For w1(x) = 1
β(i,n−i+1) [F (x)]i−1[1 − F (x)]n−i and w2(x) = 1, (i = 1 or i = n) lead us to

R(F1, G1, w1, 1, f, γ), is increasing function of n and γ.

A class of moments, called probability weighted moments (PWM) as Ml,j,k = E[X l(F (X)j(1−
F (X))k]. We can consider w1(x)

Ew1(X) = Xl(F (X)j(1−F (X))k

Ml,j,k
and w2(x)

Ew2(X) = Xl′ (F (X)j′ (1−F (X))k′

Ml′,j′,k′
. In here

we will concentrate on the case that l = l′ = 0.

• For j = j′ = 0, l′ = l + 1 and j = j′ = 1, l′ = l + 1, DKL increasing function w.r.t. (l < −2
or l > −1) and (l < −3 or l > −1) respectively. The same result can be find for l = l′ =
0, j′ = j+1 and l = l′ = 1, j′ = j+1. Also, (j′ = l′ = 0, j = l+1) and (l = n− j, l′ = n− j′)
are other special cases that is related to order statistics. (j = j′ = 0, l′ = l+1), implies that
Dχ2 decreasing function w.r.t. l.
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• For j = j′ = 0, l′ = l + 1 and j = j′ = 1, l′ = l + 1, DBh increasing function w.r.t. l. DH

decreasing function w.r.t. l.

• j = j′ implies that Dα(F1, G1) has a simple form that you can find the behaviour of it w.r.t.
j, l and l′.

• The proportional hazard model is expressed by the following relations between the survival
function of the random lifetimes, F 1(x) = (F (x))α, α > 0, F 2(x) = (F (x))β, β > 0. Hence,
relative information generating function is increasing function of α and decreasing function of
β when α < β. The proportional reversed hazard model is expressed by the similar relations
between the survival function of the random lifetimes, F1(x) = (F (x))α, α > 0, F2(x) =
(F (x))β, β > 0 hence, relative information generating function for α > β is increasing
function of α, decreasing function of β, and for β = 1, is increasing function of α when
α > 1.

Let {Xi, i ≥ 1} be a sequence of independent identically distributed random variables having cdf
F and pdf f . An observation Xj will be called an upper record value with pdf g(u) = [s(u)]n−1

Γ(n) f(u),
where s(u) = − lnF (u), F (u) = 1 − F (u), and U = XTn such that Tn = min{j, j > Tn−1, Xj =
XTn−1}. Let f1(x) = [s(x)]i−1

Γ(i) f(x) and f2(x) = [s(x)]j−1

Γ(j) f(x) be the pdf of the two upper record
distributions, then:

• DKL for i = j + 1, is equal to − ln j + ψ(j + 1). Also, DKL = − ln Γ(i) + (i − 1)ψ(i) when
w2(x) = 1. Dχ2 for w1(x) = 1 is equal Γ(2j−1)

[Γ(j)]2
− 1.

• DBh is increasing function of j, when i = j + 1 and increasing function of n. i = j + 1,
j = 1 and j = n− 1 lead us to an decreasing and increasing function of n respectively. For
w1(x) = 1 we can find again simpler statements than the general case. DH is decreasing
function of j, when i = j + 1.

• For lower record value we have pdf the same as upper record value with s(u) = − lnF (u)
and for above measures, we have the same as achieved via upper record value.

• i− j = 1, implies that R(F1, G1, w1, 1, f, γ) is decreasing function w.r.t. γ and j.

• For PWD we have the results via relation between relative information generating function
and PWD.

4 Residual Entropy in view of the Weighted Families

If a unit is known to have survived up to an age t, Ebrahimi (1996) defined residual entropy
of the nonnegative continuous random variable X as

H(F, t) = −
∫ ∞

t
ln[
f(x)
F (t)

]
f(x)
F (t)

dx, (8)

where F (t) is the survival function of X. If we put t = 0, then we get H(X, 0) is the Shannon
entropy. Nanda et al (2006) defined

Hβ
1 (F, t) =

1
β − 1

[1−
∫ ∞

t
[
f(x)
F (t)

]β ]dx, (9)

and
Hβ

2 (F, t) =
1

1− β
ln[

∫ ∞

t
(
f(x)
F (t)

)βdx], (10)

where Hβ
1 (F, t) and Hβ

2 (F, t) are first kind residual entropy of order β and second kind residual
entropy of order β of the random variable X respectively. It can be noted that as β −→ 1, then
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(9) and (10) reduce to resodual entropy that defined in (8). Hβ
1 (F, t) and Hβ

2 (F, t) can always
be made non-negative by choosing appropriate β. In the following results of this note, we will

consider g(x) = w(x)f(x)
Ew(X) as a weighted version of f and A(t) =

∫∞
t

w(x)f(x)dx

F (t)
.

• Let X and Y be two nonnegative random variables having densities f and g and distribution
functions F and G and survival functions F and G respectively as defined in previous, then,
X is said to have less uncertainty than Y if H(F, t) ≤ H(G, t) for all t ≥ 0. We write
X ≤LU Y .
X is said to be less than Y in ( first kind residual entropy of order β (written X ≤β(1) Y ) if
Hβ

1 (F, t) ≤ Hβ
1 (G, t) for all t > 0. X is said to be less than Y in ( first kind residual entropy

of order β (written X ≤β(2) Y ) if Hβ
2 (F, t) ≤ Hβ

2 (G, t) for all t > 0.
Let w(x) ≤ A(t) for ∀x > t, then Hβ

i (F, t) ≤ Hβ
i (G, t) for i = 1, 2 that g is a weighted

version of distribution F .

• X is said to be larger than Y in likelihood ratio ordering (X ≥LR Y ) if f(x)
g(x) is a non-

decreasing function of x ≥ 0. w(x) non-increasing in x implies that X ≥LR Y .

• Let X ≤LR Y and λF (x) or λG(x) be non-decreasing in x. Then it follows that X ≤LU Y .
So, let w(x) non-decreasing and λF (x) or λG(x) be non-decreasing in x, then, X ≤LU Y .
Also, Let A(x)

w(x) , −λF (x) and A(x) be non-decreasing function of x, X ≤LU Y .

• If λF (x) ≥ E(w(X))[lnλF (x) + ln w(x)
A(t) for ∀t ≥ 0,∀x > t and λF (x) be non-decreasing in x,

then, X ≤LU Y .

• A natural question whether residual entropy like mean residual life and hazard rate charac-
terizes survival function or distribution function. Ebrahimi (1996) proved that H(X, t) <
∞, t ≥ 0, uniquely determine the distribution function. Hβ

i (X, t) is increasing in t, then,
Hβ

i (X, t) uniquely determines F (t), for i = 1, 2. (Nanda et al 2006).

• A non-negative random variable is said to have decreasing (increasing) uncertainty in resid-
ual life (DURL(IURL)) ifH(X, t) is decreasing (increasing). A non-negative random variable
is said to have DURL(IURL) of first kind of order β (DURLF(β)) if Hβ

1 (X, t) is decreasing
in t ≥ 0. A non-negative random variable is said to have DURL(IURL) of second kind of
order β (DURLS(β)) if Hβ

2 (X, t) is decreasing in t ≥ 0. In the above definition if we re-
place the word ”decreasing” by ”increasing”, then we call them IURLF(β) and IURLS(β)
respectively.

• The first system is very strongly better than the second system if X ≤LU Y and X ≥LR Y .
So, let w(x) and w(x)

A(x) be non-decreasing functions of x,then, H(F, t)−H(G, t) is increasing
in t.

• X is said to be stochastically than Y (X ≤ST Y ) if F (x) ≤ G(x) for all x ≥ 0. Hence, for
weighted case, if A(x) ≥ E(w(X)) for ∀x, then, X ≤ST Y .

5 Residual Information Measures for the Weighted Families

In view of Ebrahimi (1996), we defined the above measures for the case that after the unit has
survived for time t. So, Assume that the set [t,∞) be the suitable support of distributions and
F and G be two distributions which are absolutely continuous w.r.t. measure µ and dF

dµ = f and
dG
dµ = g. We have the following definitions:
Residual Kullback Leibler Information :

DKL(F,G, t) =
∫ ∞

t
ln

f(x)

F (t)

g(x)

G(t)

f(x)
F (t)

dµ, (11)
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Residual χ2− Divergence :

Dχ2(F,G, t) =
∫ ∞

t

[f(x)

F (t)
− g(x)

G(t)
]2

f(x)

F (t)

dµ, (12)

Residual Bhattacharyya Distance and Residual Hellinger Distance:

DBh(F,G, t) =
∫ ∞

t

√
g(x)
G(t)

f(x)
F (t)

dµ,DH(F,G, t) = 2[1−DBh(F,G, t)]. (13)

Residual α−Divergence :

Dα(F,G, t) =
1

1− α2

∫ ∞

t
{1−

[ g(x)

G(t)
]
1+α

2

[f(x)

F (t)
]
1+α

2

}2 f(x)
F (t)

dµ, (14)

The following results are related to the above measures :

• It is easy to see thatDH(F,G, t) =≤ 2. Via Taylor expansion and approximation, we can get,
DKL(F,G, t) ≈ 1

2Dχ2(F,G, t), DJ(F,G, t) ≈ 1
2 [Dχ2(F,G, t) + Dχ2(G,F, t)], Dχ2(F,G, t) ≈

4DH(F,G, t) .

• Sometimes we are interested in the residual distances that is introduced in (11) to (14),
between the distributions F = Fθ1 and G = Fθ2 . Between the corresponding samples distri-
butions which we denote Fn

θ1
and Fn

θ2
, the distances are meaningful for arbitrary distributions

and have no relation to the nature of spaces. Hence, results can be applicable similar the
case that t = 0 for any t, but not easier than the case t = 0.

• The residual chi-squared divergence Dχ2(F,G, t) = 2Dα(F,G, t) on taking α = −3 in (5).
Also, the residual Hellinger distance DH(F,G, t) = 1

2Dα(F,G, t) on taking α = 0 in (5).

The relative information generating function of f given the reference measure g is defined as,

R(F,G, γ, t) =
∫ ∞

t
(

f(x)

F (t)

g(x)

G(t)

)γ−1 f(x)
F (t)

dx, (15)

where γ ≥ 1 and the integral is convergent on noting that R(F,G, 1, t) = 1. In particular,
R′(F,G, 1, t) which is just residual Kullback Leibler information and R′(F,G, 1, 0)+R′(G,F, 1, 0)
is residual J−divergence between F and G. −R′(F, 1, 1, t) and R(F, 1, 2, t) are residual Shannon
(1948) entropy and residual second order entropy respectively.

The residual power divergence measure (PWD) is indexed by

PWD(F,G, t) =
1

λ(λ+ 1)

∫ ∞

t
{[

f(x)

F (t)

g(x)

G(t)

]λ − 1}f(x)dµ, (16)

The power divergence family implies different well-known divergence measures for different values
of λ. PWD for λ = −2,−1,−.5, 0, 1, implies residual Neyman Chi-square, residual Kullback
Leibler, residual squared Hellinger distance, residual Likelihood disparity and residual Pearson
Chi-square divergence respectively. Note that PWD(F,G, t) = 1

λ(λ+1) [R(F,G, λ+ 1, t)− 1].

• Let φ be an invertible increasing function, then, Dα(F1, G1, φ
−1(t)) = Dα(φ(F1), φ(G1), t).

Because,

Dα(φ(F ), φ(G), t) =
1

1− α2

∫ ∞

φ−1(t)
{1−

[ g(y)

G(φ−1(t))
]
1+α

2

[ f(y)

F (φ−1(t))
]
1+α

2

}2 f(y)
F (φ−1(t))

dy

= Dα(F,G, φ−1(t)). (17)
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It is clear that for residual Kullback Leibler information (Ebrahimi et al 1996), residual χ2

divergence, residual Bhattachryya distance, residual Hellinger distance as special cases of
(17) the result hold.

• Dα(F1, G1, t) is independent of t if and only if F1 and G1 have proportional hazard rate.
On noting that the only if is easy but for if case, assume that Dα(F1, G1, t) = b that b is
constant. It is clear that for residual Kullback Leibler information (Ebrahimi et al 1996b),
residual χ2 divergence, residual Bhttacharyya distance, residual Hellinger distance as special
cases of the above result. Note that results achieved via the technique that applied in the
Asadi et al (2005).

• Also, the residual relative information generating function and residual power divergence
measure, is independent of t if and only if F1 and G1 have proportional hazard rate.

• Suppose A(x)
w(x) be increasing in x and both F1 and G1 are new better than used ( F is said

to be new better than used if F (x + y) ≤ F (x)F (y),∀x, y, and F is said to be worse than
used if F (x+ y) ≥ F (x)F (y),∀x, y,). Then DKL(F1, G1, t) ≥ DKL(F1, G1, 0. When both F1

and G1 are worse than used, then DKL(F1, G1, t) ≤ DKL(F1, G1, 0.

We can consider f1(x) = w1(x)f(x)
Ew1(X) and g1(x) = w2(x)f(x)

Ew2(X) as the weighted distributions of f .
Then, the above measures are expressed as :
Residual Kullback Leibler Information :

DKL(F1, G1, t) =
1

A1(t)F (t)

∫ ∞

t
ln[
w1(x)
w2(x)

]w1(x)f(x)dx+ ln[
A1(t)
A2(t)

], (18)

where Ai(t)F (t) =
∫∞
t wi(x)f(x)dx for i = 1, 2.

Residual χ2− Divergence :

Dχ2(F1, G1, t) =
1

A2(t)F (t)

∫ ∞

t
[
[w2(x)]2

w1(x)
A1(t)
A2(t)

]f(x)dx. (19)

Residual Bhattacharyya Distance and Residual Hellinger Distance:

DBh(F1, G1, t) =
1

F (t)

∫ ∞

t

√
w1(x)w2(x)
A1(t)A2(t)

f(x)dx,DH(F1, G1, t) = 2− 2DBh(F1, G1, t). (20)

Residual α−Divergence :

Dα(F1, G1, t) =
1

(1− α2)A1(t)F (t)

∫ ∞

t
{1− [

w2(x)
w1(x)

A1(t)
A2(t)

](
1+α

2
)}2w1(x)f(x)dx. (21)

• For the case that w1(x) = 1, A1(t) = 1, statements in (18) to (21) change to simple
statements that their calculation is easier than the previous statements.

• For the above residual information measures, for weights like, order statistics, record value,
proportional hazard rate, reversed proportional hazard rate, hazard rate, selection samples,..
we can find the values of these residual measures and some properties of them in special cases.
Some of them lead us to calculating the integrals via incomplete gamma and incomplete beta
functions.

6 Conclusions

In many reliability and survival analysis problem the current age of the item under study must
be taken into account by information measures of the lifetime distribution. In this paper, we con-
centrate on information measures in view of weighted distribution and obtained some statements
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and characterization results due to them. Also, measures such as residual Kullback-Leibler in-
formation, residual Hellinger distance, residual χ2 distance, residual Bhattacharyya distance and
residual Renyi α− information measures are defined and discussed some properties of them spe-
cially related to weighted cases. Among the weighted cases, for these idea we find some examples.
Some properties of these examples due to residual measures discussed at the end of this note.

7 Further Works

Further works related to this research are as follows:

• Applying the weighted version of exponential and natural exponential family in view of the
residual measures that is defined in this paper.

• More details and results of the links with entropy and Fisher information in terms of hazard
rate, relationship between residual entropy function in view of Ebrahimi & Kirmani (1996)
and Asadi et al (2005) results for some weighted families.

• Finding the same results in a multivariate set-up in view of weighted families that may be
nice.

• We can apply similar results due to the above discrimination measures between two past
lives.

• The asymptotic behaviour of Kullback-Leibler information, the Hellinger distance and the
Chi-square are identical when the ratio of the density function is near one. These three
distances are used extensively in parametric families of distributions to quantify the distance
between measures from the same family indexed by different parameters. Borovkov showed
how these distances are related to the Fisher information in the limit as the difference in
the parameters go to zero. Is there a similar opinion related to residual Kullback-Leibler
information, residual Hellinger distance and the residual Chi-square measures ?
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