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Jérôme Lapuyade-Lahorgue and Wojciech Pieczynski
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Abstract. In the classical hidden Markov chain (HMC) model we have a hidden chain
X , which is a Markov one and an observed chain Y . HMC are widely used; however,
in some situations they have to be replaced by the more general “hidden semi-Markov
chains” (HSMC) which are particular “triplet Markov chains” (TMC) T = (X,U,Y ), where
the auxiliary chain U models the semi-Markovianity of X . Otherwise, non stationary
classical HMC can also be modeled by a triplet Markov stationary chain with, as a
consequence, the possibility of parameters’ estimation. The aim of this paper is to use
simultaneously both properties. We consider a non stationary HSMC and model it as a
TMC T = (X,U1,U2,Y ), where U1 models the semi-Markovianity and U 2 models the non
stationarity. The TMC T being itself stationary, all parameters can be estimated by the
general “Iterative Conditional Estimation” (ICE) method, which leads to unsupervised
segmentation. We present some experiments showing the interest of the new model and
related processing in image segmentation area.
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Notations: In this article all the processes and random variables will be defined on
the abstract probability space (E,E ,Pr).
The processes will be written in upper case letters and their realizations in lower case
letters. The marginals will be indexed by the corresponding indexes.
Except ambiguities p(t|s) will denote Pr(T = t|S = s) with the corresponding letters. If T
is continuous, this last one will be a probability density function (pdf).

INTRODUCTION

In the classical hidden Markov chain (HMC) model there is a hidden random
chain X, which is a Markov one and an observed chain Y . HMCs are efficient and
widely used in numerous problems; however, in some situations they have to be
replaced by the more general “hidden semi-Markov chains” (HSMC) [3, 5, 7, 10, 11].
Otherwise, it has been recently showed that HSMC are particular “triplet Markov
chains” (TMC [8]) T = (X,U,Y ), where an auxiliary chain U models the fact that
X is semi-Markov [9]. Furthermore, it has been also showed that a non stationary
classical hidden Markov chain can also be seen as a triplet Markov stationary



chain with, as a consequence, the possibility of parameters’ estimation [6]. The
aim of this paper is to use simultaneously both properties. We firstly consider a
TMC T 1 = (X,U1,Y ), which is equivalent to a hidden semi-Markov chain. Then
we consider that T 1 is not stationary, which is modeled by a second auxiliary
random chain U2. Finally, we consider T = (X,U 1,U2,Y ) as a TMC T = (X,U,Y )
with the auxiliary process U = (U 1,U2). Therefore we have a stationary TMC
T = (X,U,Y ) which models a non stationary HSMC (NSHSMC). We propose to
use such a T = (X,U,Y ) in unsupervised hidden discrete signal segmentation. The
parameters’ estimation is performed by an original variant of the general “Iterative
Conditional Estimation” (ICE) method [1, 2, 4] and the Bayesian segmentation is
performed by the cassical Maximum Posterior Mode (MPM) method. The interest
of the new modeling and related processing are validated by some experiments.

MODELING HIDDEN NON STATIONARY SEMI-MARKOV

CHAINS WITH TRIPLET MARKOV CHAINS

Let us consider Z = (X,Y ) with X = (X1, ...,Xn) and Y = (Y1, ...,Yn) two random
chains where each Xi takes its values in a finite set of classes Ω = {ω1, ...,ωK}, and
each Yi takes its values in R. Classically, Z = (X,Y ) is a hidden semi-Markov chain
when X is a semi-Markov chain and when the distribution of Y conditional on X
is given by p(y|x) = p(y1|x1)...p(yn|xn). Otherwise, a possible way to define semi-
Markov distribution of X is to say that this is a marginal distribution of a particular
Markov chain. More precisely, one considers a random chain U 1 = (U1

1 , ...,U1
n),

where each U 1
i takes its values in the set of positive integers N

∗ = {1,2, ...}, such
that the couple (X,U) is a Markov chain defined by p(x1,u
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distribution p(.|xi) on N
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(Xi−1,Xi, ...,Xi+j−1,Xi+j) = (xi−1,xi,xi, ...,xi,xi+j) and xi−1 6= xi and xi+j 6= xi.
This models the fact that the distribution of the “sojourn time” of the chain X
in a given state can be of any form, while it is necessarily of geometrical form in
Markov chains. More precisely, a semi-Markov distribution of X is the marginal
distribution of a Markov chain (X,U 1) whose distribution is given by p(x1,u
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where δx(.) is the Dirac measure on x. Let us notice that the variable U 1
i = u1

i

designates the remaining sojourn time in the state xi.
Returning to the observation Y , we can say that the distribution of a hidden semi-
Markov chain Z = (X,Y ) is the marginal distribution of a particular triplet Markov
chain T 1 = (X,U1,Y ). Let us put temporarily V = (X,U 1). As V is a Markov chain,



T 1 = (V,Y ) is a hidden Markov chain and we can model its possible non station-
arity by introducing an auxiliary random chain U 2 = (U2

1 , ...,U2
n), each U2

i taking
its values in a finite set Λ2 = {1, ...,M}. This leads to a TMC T = (V,U 2,Y ),
which also is a TMC T = (X,U,Y ), with the auxiliary process U = (U 1,U2).
Its distribution is given by p(x,u1,u2) and p(y|x,u1,u2) = p(y|x). Otherwise, the
distribution p(x,u1,u2) of (X,U1,U2) is given by p(x1,u

1
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The particular transitions in this product, that define the new model we propose
and that generalize formulas (1)-(2) above, are the following:
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p(x,u1,u2) being defined with (3)-(5), we end the definition of T = (X,U,Y ) by
considering p(y|x,u1,u2) = p(y1|x1)...p(yn|xn).
Finally, putting W = (X,U 1,U2), we can say that T = (W,Y ) is a classical hidden
Markov chain in which W is discrete and Y is continuous. However, let us remark
that the model is a particular one; in fact, we have p(yi|xi,u

1
i ,u

2
i ) = p(yi|xi), which

means that the noise ’s distribution does not depend on u1
i and u2

i . Of course,
one can imagine that this noise distribution does depend on u1

i , u2
i or even both

of them, and the possibility of taking this into account in the model provides its
possible further extensions.
Finally, having a classical hidden Markov chain allows us to compute
p(xi,u

1
i ,u

2
i |y) by using the classical “forward-backward” algorithm, then

p(xi|y) =
∑

u1
i
,u2

i

p(xi,u
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i |y) and the MPM solution is given by x̂i = argmaxp(xi|y).

Concerning the parameters’ estimation we use the “Iterative Conditional Estima-
tion” (ICE) described below.

PARAMETERS’ ESTIMATION AND BAYESIAN

SEGMENTATION

In experiments below we will use the following particular case of the model (3)-
(5). We will consider that U 1

i takes its values in a finite set Λ1 = {1, ...,P} and
that p(xi+1 = xi|u

2
i+1,xi,u

1
i = 1) is not necessarily null. This condition means that

for U1
i = 1 the value U 1

i+1 = u1
i+1 is not the exact sojourn duration in xi+1 but

the minimal duration. This define a particular distribution of sojourn time on N
∗

which allows us to perform direct calculations without resorting on Monte Carlo



methods.
Let us remark that a given distribution of W does not necessarily define an unique
distribution of X; however this problem does not arise in our experiments and we
will not deal with any more in this paper.
From now, we will define by W the hidden process, which will be either W = (X,U 1)
or W = (X,U1,U2). From the definition of the model seen above, W is a Markov
chain thus (W,Y ) is a classical hidden Markov chain (HMC). We will assume that
p(yi|xi = ωj) does not depend on i and is gaussian distributed with mean mj and
variance σ2

j . Moreover p(wi,wi+1) does not depend on i.

Finally, as each (Xi,U
1
i ,U2

i ) takes its values in a finite set {ω1, ...,ωK}×{1, ...,M}×
{1, ...,P}, the whole model is defined by (K ×M ×P )2 real parameters giving the
distribution p(w1,w2), K means and K variances. We propose to estimate all these
parameters from the observation Y = y by a method derived from the general
“Iterative Conditional Estimation” (ICE).
According to its general principle, one can apply ICE to estimate a vector of
parameters θ from Y once:

1. There exists an estimator θ̂(W,Y ) of θ from complete data (W,Y ).

2. For every θ one can sample W according to p(w|y,θ).

The iterative ICE method runs as following:

1. Consider an initial value1 θ0 ;

2. Put θq+1
r = E[θ̂r(W,Y )|Y = y,θq] for the component θr of θ for which this

expectation is computable ;

3. For other components, sample m realizations wq,1,...,wq,m of W according to

p(w|y,θq) and put θq+1

r =
θ̂r(w

q,1,y)+ ...+ θ̂r(w
q,m,y)

m
.

Let us consider the case W = (X,U 1), as the case W = (X,U 1,U2) can be dealt
with in a similar way. There are (K ×P )2 parameters pij = Pr(W1 = i,W2 = j)
(therefore W1 and W2 are both in {ω1, ...,ωK}×{1, ...,P}), K means m1,...,mK and
K variances σ2

1,...,σ
2
K . Denoting by I the indicator function, the classical estimator

from complete data that we use is (we assume n odd):

p̂ij(w,y) =
2

n

n

2
∑

m=1

I(w2m−1 = i,w2m = j) (6)

m̂l(w,y) =

n
∑

m=1

ymI(xm = ωl)

n
∑

m=1

I(xm = ωl)

(7)

1 This value can be set by using K-means classification.



σ̂2
l (w,y) =

n
∑

m=1

(ym − m̂l(w,y))2I(xm = ωl)

n
∑

m=1

I(xm = ωl)
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Recalling that the expectation of an indicator function is the probability of the
corresponding set and applying the conditional expectation E(p̂ij(W,y)|Y = y,θp)
to (6) gives:

p
q+1

ij (y) =
2

n

n

2
∑

m=1

p(w2m−1 = i,w2m = j|y,θq) (9)

while its application to (7) and (8) is not computable and we resort on sampling.
This sampling is workable, as p(w|y,θq) is a Markov chain with calculable transi-
tions p(wk+1|wk,y,θq) (see below). Then we simulate one sample wq (we take m = 1
in 3.) and (7), (8) are applied to (wq,y) instead of (w,y).
Finally, in order to perform unsupervised segmentation using ICE, we have to cal-
culate the following three distributions: p(wk+1|wk,y,θq), p(wk,wk+1|y,θq) needed
in ICE, and p(wk|y,θq) needed in Bayesian MPM segmentation method. These
distributions are classically computed from “forward” αk(wk) = p(wk|y1, ...,yk) and
“backward”βk = p(yk+1, ...,yn|wk,yk) coefficients, which are computed by the folow-
ing forward (10) and backward (11) recursions:

α1(w1) = p(w1|y1) and

αk+1(wk+1) =
∑

wk

αk(wk)p(wk+1,yk+1|wk,yk), ∀k ∈ {2, ...,n−1}; (10)

βn(wn) = 1 and

βk(wk) =
∑

wk+1

βk+1(wk+1)p(wk+1,yk+1|wk,yk), ∀k ∈ {n−1, ...,1}; (11)

Then we have:

p(wk,wk+1,y|θ
q) = αk(wk)βk+1(wk+1)p(wk+1,yk+1|wk,yk); (12)

this last equation gives p(wk+1|wk,y,θq), p(wk,wk+1|y,θq) and p(wk|y,θq).

EXPERIMENTS

We present below two series of experiments.
In the first one, we simulate a particular hidden semi-Markov non stationary chain,
where X takes its values in Ω = {ω1,ω2}, U1 takes its values in Λ1 = {1, ...,5}
and U2 takes its values in Λ2 = {0,1} which means that there are two different
stationarities. The distributions p(yi|xi) are normal with a common standard



deviation equal to 1 and the means are equal to 1 and 1.5 according to the value
of xi respectively. We have:

p(u2
i+1|u

2
i ,u

1
i = 1) =

(
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0.001 0.999

)

;

(p(xi+1|u
2
i+1 = 0 or 1,u1

i = 1,xi))xi,xi+1
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0.99 0.01
0.01 0.99

)

and

(

0.7 0.3
0.3 0.7

)

;

p(u1

i+1|u
2

i+1,u
1

i = 1,xi+1) =
1

5
, ∀u1

i+1,u
2
i+1,xi+1 ;

Moreover the initial distribution π(w1) = p(w1) is calculed by resolving πQ = π
where Q is the transition ’s kernel of the Markov chain W = (X,U 1,U2). One can
show this last one is π(w1) = 1

K×P×M
for all w1.

The observation Y = y is then segmented by three unsupervised methods. The first
method is based on the very classical HMC model, the second one is based on a
stationary HSMC, and the last one is based on the proposed TMC, equivalent to a
NSHSMC. Of course, as the data follow the new model, the very Bayesian theory
requires that its use gives better results than the two others. However, the experi-
ment is of interest because the three segmentations are performed in unsupervised
manner, and in a rather strongly noisy context. Then the theorical superiority of
NSHSMC based method is no longer true, and the use of a simpler model like
HSMC or even HMC, which contains less parameters to be estimated, could possi-
bly produce better results than the use of NSHSMC. Let us notice that a possible
application is image segmentation, where the use of monodimensional chains is
possible by associating the mono-dimensional process with th bi-dimensional pro-
cess set of pixels by using the Hilbert-Peano curve [1, 2, 4, 6]. The images X = x,
U2 = u2 and Y = y so obtained are presented in Figure 1. The results show that
the theoretic hierarchy is saved in the unsupervised segmentation: NSHSMC works
better than stationary HSMC and stationary HSMC works better than stationary
HMC. Otherwise, in spite of the very high level of the noise (see Y = y in Figure
1), the estimation with ICE gives quite satisfying results when using NSHSMC (see
Table 1).
In the second experiment, we consider a two classes-image X = x and its noisy
version Y = y (see Figure 2, obtained by the use of Hilbert-Peano curve). As in the
experiment above, Y = y is segmented by the same three unsupervised methods.
Of course, the data follow none of the three models and thus the objective here is
to study how each model works in such a case. As we can see in Table 2 and Fig-
ure 2, the same hierarchy is respected. Therefore we see that the NSHSMC based
unsupervised method is better than the HSMC method, and the latter method is
better than the HMC based one.
Concerning ICE, we have initialized θ by using K-means.



X = x U2 = u2 Y = y

FIGURE 1. Second line, from left to right: segmentation of Y = y with HMC (error ratio: 34%),
HSMC (error ratio: 22%) and NSHSMC (error ratio: 17%), estimation of U 2.

TABLE 1. Parameters’ estimation using ICE

Classe By HMC By HSMC By NSHSMC

Mean Std deviation Mean Std deviation Mean Std deviation

0 0.85 0.88 1.06 1.02 1.00 0.98

1 1.66 0.90 1.46 1.01 1.51 0.99

Error’s ratio 34% 22% 17%

X = x U2 = u2 Y = y

FIGURE 2. Second line, from left to right: segmentation of Y = y with HMC (error ratio: 35%),
HSMC (error ratio: 23%) and NSHSMC (error ratio: 14%), estimation of U 2.

TABLE 2. Parameters’ estimation using ICE

Classe By HMC By HSMC By NSHSMC

Mean Std deviation Mean Std deviation Mean Std deviation

0 0.84 0.91 1.09 1.04 0.9 0.94

1 1.65 0.89 1.46 1.02 1.49 0.99

Error’s ratio 35% 23% 14%



CONCLUSION

In this paper, we have proposed a new model of a hidden non stationary semi-
Markov chains. Extending some first suggestions presented in [9], the general idea
was to use a triplet Markov chain T = (X,U,Y ) with U = (U 1,U2), where U1 mod-
els the semi-markovianity and U 2 models the non-stationarity. As T = (X,U,Y ) is
itself stationary, it is possible to estimate its parameters using the general “Itera-
tive Conditional Estimation” (ICE) method, which leads to unsupervised Bayesian
segmentation methods. We proposed two series of experiments which show that,
on the one hand, the hidden semi-Markov chains based unsupervised segmentation
method works better than the classical hidden Markov chains based unsupervised
segmentation method and, on the other hand, the new model based unsupervised
segmentation method works better than the hidden semi-Markov chains model.
The classical hidden Markov chains are applied in various areas like Biosciences,
Climatology, Communications, Ecology, Econometrics and Finance, Image or Sig-
nal processing. Therefore, the model we propose in this paper is likely to be useful
and improve different processings in the same applications.
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