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Abstract. The nonparametric Bayesian estimation of non homogeneous Poisson process intensity
in presence of Type-I or Type-II dead times is addressed in the framework of multiplicative inten-
sity counting processes. In addition to the counting process, the idle/dead time (on/off) process is
observed. Inference is based on the partial likelihood either for non-informative (Type-I) or for in-
formative censoring (Type-II). A Pólya tree process with suitable partition construction is proposed
as nonparametric prior for the normalized multiplicative intensity. Performances are illustrated on
both types of censored counters.
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INTRODUCTION

The purpose of physical counting devices is to analyze particles randomly emitted and
recorded by a detector. In the framework of nuclear science, the user is interested in
an estimation of the time-varying intensity of the underlying point process (assumed
to be a Poisson process) modeling arrival times of particles. Inference on intensity
from counts may however bring out some difficulties. Indeed, electrical pulses resulting
from the interaction between the particles and the detector have finite duration and may
overlap. Thus, some arrivals may not be recorded. This censoring period is referred to as
dead-time. It might be noticed that dead-time can also be produce by other independent
phenomena, like disrupted measure or temporal breakdown. Several experimental areas
in nuclear physics [1], astrophysics (e.g.γ bursts [2, 3]) and biology [4] are faced to the
problem of censored counters. Further physical description of particles counters can be
found in [5] and theoretical results for counter processes in [6, 1, 7].

To model the observed process, the general framework of the multiplicative intensity
point processes can be used (see [8, 9]) . Based on this model and for a large number
of applications, [10] shows that a beta process prior is relevant and conducts to tractable
a posterioridistributions. His proposed prior, though adapted for the cumulative hazard
rate, cannot be used for the direct estimation of the intensity of the input Poisson process.

Our motivation in this contribution is therefore to address the problem of estimating
the intensity of the input Poisson process given a sample path of an indicator data
function Y, that is a function whose value is 0 during dead-time and 1 otherwise.
We propose a nonparametric Bayesian approach for this purpose, based on Pólya tree
processes methodology. The paper is organized as follows: first, assumptions and results



of [10] are recalled. A description of Pólya tree processes, as well as a description of
the methodology used are provided. Finally, applications are presented in the case of
so-called Type-I and Type-II counters, which give promising results.

ASSUMPTIONS AND THEORETICAL RESULTS

We recall in this section the assumptions and theoretical results that can be found in [10].
Let A denote the point process associated the arrival times of particles in the detector.
We assume that

(H-1) A is a non-homogeneous Poisson process on the positive half-line with intensity
λ . We also assume that‖λ‖∞ is finite on the positive half-line.

Let N be the point process associated to the recorded particles. We denote bySi the
arrival time of thei-th recorded particle and byCi its corresponding censoring duration.
Let Y be an observed associated indicator process, such that for all nonnegativet:

Y(t) def= I(t ≥ SN(t−) +CN(t−)) . (1)

ProcessesA, N andY can be related as follows:

N(t) =
∫ t

0
Y(s)dA(s) . (2)

We further assume that

(H-2) N has multiplicative intensity (see Aalen [8]), that is

lim
∆t↓0

1
∆t

E(N(∆t + t)−N(t)|Ft) = Y(t+)λ (t+) (3)

whereFt
def= σ{Nt∪Yt} and{Nt}t≥0 (resp.{Yt}t≥0) is the filtration generated by

N (resp.Y), that is for allt, Nt
def= σ {N(u), 0≤ u≤ t}, Yt

def= σ {Y(u), 0≤ u≤ t}.
A requirement onY is that it is predictable, that is left-continuous with right limit and
adapted to{Ft}t≥0. By construction the processY defined by (1) meets this requirement.
The problem of intensity estimation can be therefore considered as follows: given a
sample path ofY over [0,T], we wish to estimateλ . We first proceed to express the
observed data likelihoodL(λ ) using product integral notation [9, Section II.6]. Let

∆N(t) def= N(t)−N(t−) and∆Y(t) def= Y(t+)−Y(t).

L(λ ) = ∏
[0,T]

Pr(∆N(t), ∆Y(t)|Ft−, λ )

= ∏
[0,T]

Pr(∆N(t)|Ft−, λ ) ∏
[0,T]

Pr(∆Y(t)|Ft−, ∆N(t), λ ) (4)



Since we assumed (H-2), we use the results of [8, Section 3.3] can be used, which leads
to:

LP(λ ) def= ∏
[0,T]

Pr(∆N(t)|Ft−, λ ) ∝
N(T)

∏
i=1

λ (Si) exp(−
∫ T

0
λ (u)Y(u)du) . (5)

On the other hand, noting that by definition ofY(t), Pr(∆Y(t) = −1|∆N(t) =
1, Ft−, λ ) = 1 and Pr(∆Y(t) = 0|∆N(t) = 0,Y(t−) = 1, λ ) = 1, it comes that

LC(λ ) def= ∏
[0,T]

Pr(∆Y(t)|Ft−, ∆N(t), λ )

= ∏
[0,T]

Pr(t ≤ SN(t) +CN(t)|Ft−, ∆N(t), λ )I(Y(t+)=0,Y(t)=0)

× (1−Pr(t ≤ SN(t) +CN(t)|Ft−, ∆N(t), λ ))I(Y(t+)=1,Y(t)=0)

=
N(T)

∏
i=1

Pr(Ci |S1, . . . ,Si ,C1, . . . ,Ci−1, λ ) . (6)

In the case of Type-I counters the sequence{Ci}i≥1 is i.i.d. and independent of{Si}i≥1
and ofλ [6, 10]. LC(λ ) is then non-informative for the estimation ofλ and the partial
likelihoodLP(λ ) preserves the form of the likelihoodL(λ ) (see [9, Sections II.7, III.2]).
For Type-II counters, independence does not hold anymore inLC(λ ) which appears thus
informative. Since inference fromLC(λ ) may exhibit great complexity, we choose to
infer only from the partial likelihoodLP(λ ). This corresponds to exact inference for
Type-I counters and to an approximation for Type-II counters.

Though giving a theoretical framework, it is not easy to estimateλ directly
from LP(λ ) expression. Remark that for alli, Y(Si) = 1, hence equation (5) can
be transformed to obtain a more tractable expression. Specifically, given a sample
S= {S1, . . . ,SN(T)}, we getLP(λ ) ∝ LN(T)(K)LS(ρ), where

K
def=
∫ T

0
λ (u)Y(u)du

ρ(t) def=
Y(t) ·λ (t)

K

LN(T)(K) def= KN(T)e−K (7)

LS(ρ) def=
N(T)

∏
i=1

ρ(Si) (8)

This reparametrization leads to a separable likelihood. Hereρ corresponds to the nor-
malized intensity ofN and will be considered as an intermediate infinite-dimensional
parameter for inference onλ provided an estimate ofK is known. Next section provides
methods of inference for these functions.



METHODOLOGY

The partial likelihood depends on the parameterK and on the functionρ. We propose
a standard Bayesian approach for the estimation ofK, and a nonparametric Bayesian
method based on the Pólya tree framework forρ, which are detailed below.

From (7), the likelihoodL(K) is proportional to a Poisson distribution whose conju-
gate prior is known to be a Gamma distribution. We further denote byΓ(µ,ν) such a
distribution, with shape parameterµ and scale parameterν are chosen by the user.Thus
the posterior distribution ofK, denoted byK|N(T), is given by

K|N(T)∼ Γ(µ +N(T),ν +1) (9)

We now focus on the nonparametric estimation ofρ. Based on the expression ofL(ρ)
in (7), the idea is to consider the estimation of the normalized multiplicative intensity
ρ as a probability measure estimation problem. Indeed, we recognize the likelihood of
an exchangeable sequence which admits a De Finetti measure (see [11, Chap. 2.6]).
As mentioned in [12], Pólya tree processes correspond to the De Finetti measure in a
generalized Pólya urn scheme. This makes this random measure prior a good candidate
for a nonparametric Bayesian estimation ofρ. We give now a definition and some
properties of Pólya-trees.

Let E = {0,1} andEm be them-fold Cartesian productE×·· ·×E with E0 def= /0. Let
E? = ∪∞

m=0Em. Let π0 = [0;T] and for all integerm, πm = {Bε : ε ∈ Em} be a partition
of [0;T] so that sets ofπm+1 are obtained by a binary split of the sets ofπm. Note
thatΠ = ∪∞

m=0πm generates the measurable sets. A probability distributionG on [0;T]
has a Pólya tree distribution with parameter(Π,A), denoted byG∼ PT(Π,A), if there
exists a sequence of nonnegative numbersA = {αε : ε ∈ E?} and a sequence of random
variablesV = {Vε : ε ∈ E?} such that

(i) V is a sequence of independent random variables,
(ii) for all ε in E?, Vε ∼ Beta(αε0,αε1), and

(iii) for all integerm andε = ε1 · · ·εm in Em,

G(Bε1···εm) =
m

∏
j=1

ε j=0

Vε1···ε j−1×
m

∏
j=1

ε j=1

(1−Vε1···ε j−1)

with factors equal toV/0 or 1−V/0 if j = 1.

Pólya trees allow to generate continuous distributions, under some conditions on its
parameters. Another interesting property of Pólya tree is its conjugacy to the likelihood
of observed data lying in a given subset of any partition. Consequently, the posterior
distribution associated to a Pólya tree prior is still a Pólya tree. More precisely, given a
Pólya tree priorG∼ PT(Π,A) and an i.i.d. sampleX = (X1,X2, . . . ,Xn) with common
distributionG, then

(i) G|X ∼ PT(Π,AX1,...,Xn), where the updated parameters are given for allε in Em by

α
X1,...,Xn
ε = αε +nε ,with nε

def= #{i ∈ {1, . . . ,n} : Xi ∈ Bε} (10)



(ii) for all integermand everyε in Em, the conditional expectation distribution is given
by

E(G|X) =
m

∏
i=1

αε1···εi +nε1···εi

αε1···εi−10 + αε1···εi−11 +nε1···εi−1

(11)

A more exhaustive description of Pólya trees processes and their properties are given in
[13, 12]. We now describe an explicit construction of the Pólya tree prior suitable for
the censored counter problem. Recall that in our application, no data is observed during
busy periods, hence no information is available to update the distribution over the dead-
times. DefineL =

∫ T
0 Y(u)du and the distributionG0 for all Borel setB in [0,T] such

that

G0(B) =
1
L

∫
B

Y(u)du , (12)

We assume thatL > 0 ensuring that there is at least an idle period on[0;T]. Since
G0 is a monotonous function, define its associated Levy inverse function for all x in

(0,1) as G̃0(x) def= inf{t ∈ [0,T] : G0(t) ≥ x}. Given G0 defined in (12), we construct
the binary quantile partitions on the uncensored periods of time as follows: letB/0 =
G̃0(G0([0,T]))Ω? and for all integerm and allε = (ε1 · · ·εm) in Em:

Bε1···εm =

(
G̃0

(
2−m

m

∑
k=1

εk2
k−1

)
,G̃0

(
2−m

m

∑
k=1

εk2
k−1 +2−m

))
def= (aε ,bε) . (13)

In addition to the binary partitions tree, we define the tree parametersA = {αε ,ε ∈ E?}
such that for allε in E?, αε0 = αε1. It might be noticed that this particular quantile
partitions construction ensures that for allε in E? andG∼ PT(Π,A), G0(Bε) > 0 and
E(G) = G0 which would correspond to a uniform prior forλ .

Even if the binary splitting procedure may be pursued infinitely, computational im-
plementation implies the definition of a predefined maximum levelM. In the sequel, we
will consider Pólya trees partially specified until levelM.

We now consider a sampleS=
{

S1, . . . ,SN(T)
}

of points ofN. The posterior distribu-
tion G|S is computed using (10), which leads to

G|S∼ PT(Π,AS), with α
S
ε = αε +N(bε)−N(aε) for all ε in E? . (14)

The conditional mean is also obtained for allε = ε1 · · ·εM in EM using (11) and (13):

E(G(Bε)|S) =
M

∏
j=1

αε1···ε j +N(bε1···ε j )−N(aε1···ε j )
αε1···ε j−10 + αε1···ε j−11 +N(bε1···ε j−1)−N(aε1···ε j−1)

. (15)

We now provide an estimator̂λ
def= (λ |S,K) of λ which is piecewise constant over the

sets ofπM, that is for allε in EM andt in Bε , λ̂ (t) = λε . Under this restriction,(λ |S,K)
can be explicitly computed. First, we remark that for the binary quantile partitions setΠ
and forG∼ PT(Π,A),

G(Bε) =
∫

Bε

ρ(u)du=
1
K

∫
Bε

Y(u)λ (u)du=
L

K 2M λε .



Consequently, draws from(λ |S,K) can be generated for allε in EM from the three
following steps:

(i) generateK from (9) : (K|N(T))∼ Γ(µ +N(T),ν +1)
(ii) for all ε in EM, computeG(Bε)|S using (14),

(iii) for all ε in EM, computeλε

λε =
2MK

L
G(Bε) . (16)

In addition, conditional mean forλε can be expressed from (9) and (15) due to indepen-
dence of(K|N(T)) andG(Bε); we get for allε = ε1 · · ·εM in EM,

E(λε |S,K) =
2M

L
µ +N(T)

ν +1

M

∏
j=1

αε1···ε j +N(bε1···ε j )−N(aε1···ε j )
αε1···ε j−10 + αε1···ε j−11 +N(bε1···ε j−1)−N(aε1···ε j−1)

.

(17)

APPLICATIONS

As mentioned in the previous section, our estimator depends on an underlying fixed
partition. Even if parameters are chosen to ensure continuity of generated distributions,
a lack of smoothness can appear at partition endpoints for finite Pólya trees. Moreover,
in many practical applications, the counting process is an open-ended stream (that is,T
is large with respect to the busy period durations) and it could be needed to estimate its
intensity sequentially on overlapping subsets of[0;T]. For this purpose, we also propose
another estimator ofλ obtained by averaging conditional expectations of shifted finite
Pólya trees estimates. As a side result, this mixture could reduce the observations of
discontinuities by averaging distributions across shifted partitions.

Denote byτM a shift parameter which must be tuned in order to tackle the dynamics of
λ . Denote byG̃U the quantile function of the unnormalized measureGU(t) =

∫ t
0Y(u)du,

and define for all integeri: ti = G̃U(iτM). Based on (13), different partitions trees are
defined on each subset[ti ; ti+2M ] for all integeri andε = (ε1, . . . ,εm) in Em as follows:

Bi
ε1···εm

=

(
G̃U

(
ti +2M−m

τM

m

∑
k=1

εk2
k−1

)
,G̃U

(
ti +2M−m

τM +2M−m
τM

m

∑
k=1

εk2
k−1

))

We can therefore propose another piecewise constant estimatorλ̂ such that for allt in
[ti , ti+1], λ̂ (t) = λi . Following (17) the conditional expectation estimate ofλi is simply
obtained by averaging theκi = min(2M, i + 1) conditional means distributions whose
partitions containti . Specifically, we get that

λ̂i =
1

κiτM

κi−1

∑
j=0

(
µ +N(Bi− j

/0 )
ν +1

M

∏
k=1

αε1···εk +N(Bi− j
ε1···εk

)

αε1···εk−10 + αε1···εk−11 +N(Bi− j
ε1···εk−1

)

)
, (18)



whereε1 · · ·εM is theM-digits binary representation ofj andN(B) def=
∫

BdN.
We now discuss on the choice on the prior parameters. Since our degree of belief

on K is very vague, beta prior parametersµ and ν should be set very small. Tree
parametersA control how generated random distributions deviate fromG0 and require
more attention. A default method usually suggested is to chooseαε depending only
of the tree levelm : for all ε ∈ Em, αε = am. According to the Kraft theorem [13],
a condition to generate absolutely continuous distributions with probability one with
respect to Lebesgue measure is∑∞

m=0a−1
m < ∞. This condition is respected for example

whenam ∝ ηm with η > 1. In addition the growth rateη controls Pólya tree smoothness.
We present results on two simulated sequences corresponding to Type I and Type II

counters. The “true”λ is taken as a mixture of Gamma distribution in both cases. The
realization of the input Poisson process is the same for both sequences. The parameters
are set to:τM = 1, M = 13,am = 0.1 ·3m. We observeN(T) = 577 (resp.N(T) = 434)
for Type I (resp. Type II) recorded events, with a 30% (resp. 36%) dead-time percentage.
We compare our shifted Pólya tree based estimateλ̂ given in (18) to a nonparametric
estimation based on assumption that intensity is piecewise constant on regular intervals,
given for all h by λ ?(h) = (N((h+ 1)τ?)−N(hτ?))/

∫ (h+1)τ?

hτ?
Y(u)du, with τ? = 256

chosen such that the denominator ofλ ? is positive. We also present an estimate without
dead time correction given for allh by λ ?b (h) = (N((h+ 1)τ?)−N(hτ?))/τ?. Results
are displayed in Figure 1 for the Type I counter, and in Figure 2 for the Type II counter.
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FIGURE 1. Type-I counters data and estimators: “true”λ (t) (blue), estimatorλ ?
b (cyan), estimatorλ ?

(green), estimator̂λ (red). Upper and detailed plots :∆N(t) (blue),Y(t) (orange).

Since the posterior distribution are explicit, our algorithm is very efficient and behaves
as a nonlinear moving average on the counts data. As expected by the use of a random
measure prior, the algorithm smoothes more the regions with few recorded jumps. We
encounter those regions whenλ0 is small (few Poisson arrivals) and, for Type-II counters
only, whenλ0 increases such we observe few uncensored jumps. A Monte-Carlo MSE
estimate leads for Type-I (resp. Type-II) to:E((λ − λ̂ )2) ≈ 1.510−4 (resp. 2.110−4),
andE((λ −λ ?)2)≈ 5.310−4 (resp. 1.110−3) for the chosenλ and parameters.
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FIGURE 2. Type-II counters data and estimators: “true”λ (t) (blue), estimatorλ ?
b (cyan), estimatorλ ?

(green), estimator̂λ (red). Upper and detailed plots :∆N(t) (blue),Y(t) (orange).

CONCLUSION

We have built an estimator of the intensity of a censored Poisson process, which gives
good results on simulations. Experiments show that a nonparametric Bayesian approach
outperforms empirical procedures and seems flexible enough to capture a wide range
of intensity profiles. Theoretical aspects of our estimator will be developed in future
contributions.
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