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Abstract. We present and analyze three different online algorithms for learning in discrete Hidden
Markov Models (HMMs) and compare their performance with theBaldi-Chauvin Algorithm. Using
the Kullback-Leibler divergence as a measure of the generalization error we draw learning curves
in simplified situations and compare the results. The performance for learning drifting concepts of
one of the presented algorithms is analyzed and compared with the Baldi-Chauvin algorithm in the
same situations. A brief discussion about learning and symmetry breaking based on our results is
also presented.
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INTRODUCTION

Hidden Markov Models(HMMs) [1, 2] are extensively studied machine learning models
for time series with several applications in fields like speech recognition [2], bioinfor-
matics [3, 4] and LDPC codes [5]. They consist of a Markov chain of non-observable
hidden statesqt ∈ S, t = 1, ...,T , S = {s1,s2, ...,sn}, with initial probability vector
πi = P(q1 = si) and transition matrixAij(t) = P(qt+1 = sj |qt = si), i, j = 1, ..,n. At
discrete timest, eachqt emmits anobserved stateyt ∈ O, O = {o1, ...,om}, with emis-
sion probability matrixBiα(t) = P(yt = oα|qt = si), i= 1, ...,n, α = 1, ...,m, which are
the actual observations of the time series represented, from time t = 1 to t = T , by the
observed sequenceyT

1 = {y1,y2, ...,yT}. The qt’s form the so calledhidden sequence
qT
1 = {q1, q2, ..., qT}. The probability of observing a sequenceyT

1 givenω ≡ (π,A,B) is

P(yT
1 |ω) =

∑

qT
1

P(y1)P(y1|q1)
T
∏

t=2

P(qt+1|qt)P(yt|qt). (1)

The learning processconsists in presenting a series to the HMM which adapts its
parameters in order to produce sequences that mimic it. Depending on how data is
presented, it can range fromoffline, when the whole data is given and parameters are
calculated all at once, toonline, when the data is given only by parts and a partial
calculation of the parameters is made.



We study a scenario with a data set generated by a HMM of unknown parameters. This
is an extension of the student-teacher scenario extensively studied in neural networks.
The performance of the learning process, as a function of thenumber of observations,
is given by howfar, measured by a suitable criterion, is the student from the teacher.
Here we use the naturally arisingKullback-Leibler divergence(KL-divergence), which
although not accessible in practice since it needs knowledge from the teacher, is a simple
extension of the idea of generalization error and thereforecan be very informative.

We propose three algorithms and compare them with theBaldi-Chauvin Algorithm
(BC) [6]: theBaum-Welch Online Algorithm(BWO), an adaptation of the offlineBaum-
Welch Reestimation Formulas(BW) [1], then, starting from a Bayesian formulation, an
approximation called theBayesian Online Algorithm(BOnA), which can be simplified
further without noticeable deterioration of performance to aMean Posterior Algorithm
(MPA). The last two methods, inspired by the work of Amari [7]and Opper [8] are
essentially mean field methods [9] in which a manifold of tractable distributions to be
used as priors is introduced and the new datum leads, throughBayes theorem, to a non-
tractable posterior. The key inference step is to take as thenew prior, not the posterior
itself, but the distribution in the manifold which is the closest in some sense.

The paper is organized as follows: first, BWO is introduced and analyzed. Next, we
derive BOnA for HMMs and, from it, MPA. We compare the behaviour of MPA and BC
with respect to learning drifting concepts and then presenta discussion about learning
and symmetry breaking based upon our results followed by ourconclusions.

BAUM-WELCH ONLINE ALGORITHM

TheBaum-Welch Online Algorithm(BWO) is an adaptation of BW to online situations
where in each iteration of BW, which is a step towards a maximum of the average over
the hidden sequences ofP(q,y), y becomesyp, thep-th observed sequence. Multiplying
the BW increment by a learning rateηBW we get the update equations

ω̂p+1 = ω̂p +ηBW ∆̂ωp, (2)

with ∆̂ωp the BW variations ofω calculated withyp. The complexity of BWO is
polynomial inn andT .

In figure 1, the HMM learns sequences generated by a teacher with n= 2,m= 3 and
T = 2 for differentηBW . Initial students have matrices with all entries set to the same
value, what we call asymmetric initial student. We took averages over 500 random
teachers and distances are given by the KL-divergence between two HMMsω1 andω2

dKL(ω1,ω2) ≡
∑

yT
1

P(yT
1 |ω1) ln

[

P(yT
1 |ω1)

P(yT
1 |ω2)

]

. (3)

We see that after a certain number of sequences the HMM stops learning, which is
particular to the symmetric initial student and disappearsfor a non-symmetric one.
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FIGURE 1. Log-log curves of BWO for three differentηBW indicated next to the curves.

Denoting the variation of the parameters in BC by∆, in BW by ∆̂, in BWO by ∆̃,
and withγt(i) ≡ P(qt = si|y

p,ωp), we have to first order inλ

∆πi =
ληBC

n
∆̂πi =

λ

n

ηBC

ηBW

∆̃πi, (4)

∆Aij =
ληBC

n

[

T−1
∑

t=1

γt(i)

]

∆̂Aij =
λ

n

ηBC

ηBW

[

T−1
∑

t=1

γt(i)

]

∆̃Aij ,

∆Biα =
ληBC

n

[

T
∑

t=1

γt(i)

]

∆̂Biα =
λ

n

ηBC

ηBW

[

T
∑

t=1

γt(i)

]

∆̃Biα.

For ηBW ≈ ληBC/n and smallλ, variations in BC are proportional to those in BWO,
but with different effective learning rates for each matrixdepending onyp. Simulations
show that actual values are of the same order of approximatedones.

THE BAYESIAN ONLINE ALGORITHM

The Bayesian Online Algorithm (BOnA) [8] uses Bayesian inference to adjustω in the
HMM using a data setDP = {y1, ...,yP}. At each sequence we update a prior distri-
bution by Bayes’ theorem, which takes a prior in a parametricfamily to a posterior no
longer in it. BOnA projects it back by minimizing its KL-divergence with the projected
distribution. Parameters are estimated as the means in the projected distribution.

For a family of the formP (x)∝ e−
P

i λifi(x), which is obtained by MaxEnt constrain-
ing the averages overP (x) of arbitrary functionsfi(x), minimizing the KL-divergence
is equivalent to equating these averages to those over the unprojected posterior.

For HMMs, the vectorπ and each row ofA andB are different discrete distributions
which we assume independent in order to write the factorizeddistribution

P(ω|u) ≡P(π|ρ)
n
∏

i=1

P(Ai|ai)P(Bi|bi). (5)

whereAi ≡ (Ai1, ...,Ain),Bi ≡ (Bi1, ...,Bim) andu= (ρ,a,b) represents the parameters
of the distributions.



As each factor is a distribution over probabilities, the natural choice are the Dirichlet
distributions, which for aN-dimensional variablex is

D(x|u) =
Γ(u0)

∏N

i=1 Γ(ui)

N
∏

i=1

xui−1
i , (6)

with u0 =
∑

iui. These can be obtained from MaxEnt withfi(x) = lnxi [13]:

∫

dµD(x) lnxi = αi, dµ≡ δ

(

∑

i

xi−1

)

∏

i

θ(xi)dxi. (7)

The function to be extremized is

L =

∫

dµD lnD+λ

(
∫

dµD−1

)

+
∑

i

λi

(
∫

dµD lnxi−αi

)

, (8)

and withδL/δD = 0 we get the Dirichlet with normalizationeλ+1 andui = 1−λi.
Each factor distribution is separately projected by equating the average of the loga-

rithms in the original posteriorQ and in the projected distributions

ψ(ρi)−ψ

(

∑

j

ρj

)

= 〈lnπi〉Q ≡ µi(ρ), (9)

ψ(aij)−ψ

(

∑

k

aik

)

= 〈lnAij〉Q ≡ µij(a),

ψ(biα)−ψ

(

∑

β

biβ

)

= 〈lnBiα〉Q ≡ µiα(b),

whereψ(x) = d lnΓ(x)/dx is the digamma function. We call a set ofN equations

ψ(xi)−ψ

(

∑

j

xj

)

= µi, (10)

with i= 1, ...N adigamma systemin the variablesxi with coefficientsµi.
Let us callP p(ω) the projected distribution after observation ofyp, andQp+1(ω) the

posterior distribution (not projected yet) afteryp+1. By Bayes’ theorem,

Qp+1(ω) =
1

ZQ

P p(ω)
∑

qp+1

P(yp+1, qp+1|ω), (11)

whereZQ is the normalization.
The calculation ofµ’s in (9) leads to averages over Dirichlets of the form [10]

µi =

〈[

∏

j

x
rj

j

]

lnxi

〉

=
Γ(u0)
∏

j Γ(uj)

∏

j Γ(uj + rj)

Γ(u0 + r0)
[ψ(ui + ri)−ψ(u0 + r0)]. (12)



In order to solve (10), we solve forxi, sum overi with x0 ≡
∑

ixi and write it as a
one-dimensional map

xn+1
0 =

∑

i

ψ−1[µi +ψ(xn
0 )], (13)

finding numerically the fixed point by iterating from an arbitrary initial point. We found
a unique fixed point except forµi’s too close to 0, which is rare in most applications.

BOnA suffers from a common problem of Bayesian algorithms: due to the sum over
hidden variables, the complexity scales exponentially inT . Also, the calculation of
several digamma functions is very time consuming. In the next section, we develop an
approximation that runs faster, although still with exponential complexity inT , which is
not a problem for we can fixT with the algorithm scaling polynomially inn.

MEAN POSTERIOR APPROXIMATION

The Mean Posterior Approximation (MPA) is a simplification of BOnA inspired in its
results for gaussians, where we match the first and second moments of posterior and
projected distributions. Noting this, instead of minimizingdKL we just match the mean
and one of the variances of posterior and projected distributions as an approximation.

With hatted variables for reestimated values, the matchingof the moments gives [10]

ρ̂i = 〈πi〉Q
〈π1〉Q −〈π2

1〉Q

〈π2
1〉Q−〈π1〉

2
Q

, (14)

âij = 〈aij〉Q
〈ai1〉Q −〈a2

i1〉Q

〈a2
i1〉Q −〈ai1〉

2
Q

,

b̂iα = 〈biα〉Q
〈bi1〉Q−〈b2i1〉Q

〈b2i1〉Q−〈bi1〉
2
Q

.

The complexity is again of ordernT , but the simplifications heavily reduce the real
computational time making it better for practical applications.

Figure 2 compares MPA and BOnA. The initial difference gets smaller with time and
both come closer relatively fast. We usedn = 2, m = 3 andT = 2 and averaged over
150 random teachers with symmetric initial students. The computational time for BOnA
was 340min, and for MPA, 5s in a 1GHz processor. Figure 3a compares MPA to BC
and figure 3b to BWO. In both cases MPA has superior generalization. We usedn = 2,
m= 3, T = 2, symmetric initial students and took averages over 500 random teachers.

LEARNING DRIFTING CONCEPTS

We tested BC and MPA for changing teachers. In figure 4a, the teacher changes at ran-
dom after each 500 sequences (λ= 0.01, ηBC = 10.0). In figure 4b, each time a sequence
is observed, a small random quantity is added to the teacher.Both simmulations used
n= 2,m= 3 and were averaged over 200 runs.
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FIGURE 2. Comparison in log-log scale of MPA (dashed line) and BOnA (circles).
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FIGURE 3. a) Comparison between MPA (dashed) and BC (continuous). Values ofλ are indicated next
to the curves.ηBC = 0.5. b) Comparison between MPA (dashed) and BWO (continuous). Values ofηBW

are indicated next to the curves. Both scales are log-log.

Figure 4b shows that BC adapts better, but is notfully adaptive and we do not know
how to modify it. MPA instead derives from Bayesian principles and we can guess
the problem by analogy with similar Bayesian algorithms [12]: the variance of the
distributions decreases in the process as in the perceptroncase, where they turn out
to be the learning rates, explaining the memory effect whichdifficults the learning after
changes. Although we cannot prove it yet, we expect that variance and learning rate are
similarly related in MPA, which can be used to improve its performance.
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FIGURE 4. Drifting concepts. Continuous lines correspond to MPA and dashed lines to BC. a) Abrupt
changes at 500 sequences interval. b) Small random changes at each new sequence.
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FIGURE 5. KL-divergence and student’s parameters for a) BC and b) MPA.

LEARNING AND SYMMETRY BREAKING

Learning from symmetric initial configurations requires that in some point the student
parameters break appart from each other and the student’s symmetry is broken, marked
as a sharp decrease in the generalization error. This point depends on the algorithm and
is an important feature inonlinealgorithms [11].

Instead of taking averages which smooth out abrupt changes,here we draw curves for
only one teacher, rendering the changes visible. Flat pieces before a symmetry breaking
are calledplateauxand occur in situations where it is difficult to break the symmetry.

Figure 5a shows the results for BC (λ = 0.01, ηBC = 1.0). There are two abrupt
changes indKL: at the beginning of the process and after 1000 sequences.π andA only
break their symmetry in the second, whileB breaks it at both points. Figure 5b shows
that in MPA the second change is stronger and the symmetry breaking affects bothB
andA. Figure 6 shows BWO withηBW = 0.01 where onlyB breaks its symmetry. Note
that the more symmetries are broken, the best is the generalization of the algorithm.

In all simulations we setn= 2,m= 3 andT = 2 with a teacher HMM given by

π =

(

1
0

)

, A =

(

0 1
1 0

)

, B =

(

1 0 0
0 0 1

)

. (15)

CONCLUSIONS

We proposed and analyzed three learning algorithms for HMMs: Baum-Welch On-
line (BWO), Bayesian Online Algorithm (BOnA) and Mean Posterior Approximation
(MPA). We showed that when the teacher does not change, MPA has superior perfor-
mance, but for drifting concepts, the Baldi-Chauvin (BC) algorithm is better, although
the Bayesian nature of MPA suggests how to fix this behavior.

The importance of symmetry breaking in learning processes is presented here in a
brief discussion where the phenomenon is shown to occur in our models.
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FIGURE 6. KL-divergence and student’s parameters for BWO.

Preliminary studies on real data seem to confirm the performance of the algorithms.
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