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Abstract. A common objective of molecular simulations in chemistry and biology is to calculate
the free energy difference between systems of interest. We propose to improve estimates of these
free energies by modeling the underlying probability distribution as a the square of a “wave
function”, which is a linear combination of Gram-Charlier polynomials. The number of terms, N ,
in this expansion is determined by calculating the posterior probability, P (N |X), where X stands
for all energy differences sampled in a simulation. The method offers significantly improved free
energy estimates when the probability distribution is broad and non–Gaussian, even if sample size
is small. This makes it applicable to challenging problems, such as protein–drug interactions.
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INTRODUCTION

To understand chemical and biological processes at a molecular level, it is often nec-
essary to examine their underlying free energy behavior. This is the case, for instance,
in protein folding, protein–ligand, protein–protein and protein–DNA interactions, and
in drug partitioning across the cell membrane. These processes, which are of paramount
importance in the fields of biotechnology and computer-aided, rational drug design, can-
not be predicted reliably without the knowledge of the associated free energy changes.

The Helmholtz free energy, A in the canonical ensemble can be expressed in terms of
the partition function, Q

A =−β−1 lnQ =−β−1 ln
1

N !h3N

∫
exp[−βH (x,px)]dxdpx (1)

where N is the number of particles, h is the Planck constant, β = 1/kT , k is the Boltz-
mann constant and T is temperature. From this equation it follows that calculating A is
equivalent to estimating Q, which is a very difficult undertaking. In both experiments
and calculations, however, we are interested in free energy differences, ∆A, between
two systems, say 0 and 1, described by the partition functions Q0 and Q1, respectively.

∆A =−β−1 lnQ1/Q0 (2)

This equation indicates calculating ∆A requires determining the ratio of Q1/Q0 rather
than individual partition functions. On the basis of computer simulations this can be done
in various ways [1]. One approach is to transform Eq. (2) as follows:



∆A =−β−1 ln

∫
exp[−βU1 (x)]dx∫
exp[−βU0 (x)]dx

=−β−1 ln〈exp{−β (∆U)}〉0 (3)

Here, potential energy functions for systems 0 and 1 are U0(x), and U1(x), respectively,

P0 (x) =
exp[−β0U0 (x)]

Z0

(4)

is the probability density function of finding system 0 in the microstate defined by par-
ticle positions x, ∆U = U1(x)−U0(x) and 〈. . .〉0 denotes an average over the ensemble
0. This indicates that ∆A can be calculated by sampling system 0 only. Since ∆A is
evaluated as the average of a quantity that depends only on ∆U , it can be expressed as a
one–dimensional integral over energy difference:

∆A =−β−1 ln
∫

exp(−β∆U) P0(∆U) d∆U (5)

where P0(∆U) is the probability distribution of ∆U sampled for system 0. If energies
were the functions of a sufficient number of identically distributed random variables,
then P0(∆U) would be a Gaussian, as a consequence of the central limit theorem. In
practice, it deviates from a Gaussian, but is still “Gaussian–like”. To yield free energy,
P0(∆U) is integrated with the Boltzmann weighting factor exp(−β∆U). This means
that the poorly sampled, negative ∆U tail of the distribution provides the dominant
contribution to the integral, whereas the contribution from the well sampled region
around the peak of P0(∆U) is small. This is illustrated in Figure 1.
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FIGURE 1. P0(∆U) (circles) and the integrand in equation (5), exp(−β∆U)P0(∆U) (triangles). Only
the right side of the integrand is sampled, which precludes accurate estimation of the integral.

It would be natural to exploit our knowledge of the whole P0(∆U), rather than its
low–∆U tail only. The simplest strategy is to model P0(∆U) as an analytical function or



a series expansion whose adjustable parameters are determined primarily from the well–
sampled region of the function. In general, such approach fails, because its reliability
deteriorates away from the region, in which the function is known with a good accuracy.
Here, however, we might be successful, because P0(∆U) is smooth and Gaussian–like.
So far, there have been only a few attempts at modeling P0(∆U). One is to represent it
as a linear combination of Gaussian functions [2]. Another model is sometimes called
the “universal” probability distribution function [3], because it has been suggested that it
suitably represents global quantities in a broad class of finite–size, equilibrium or non–
equilibrium systems characterized by strong correlations and self–similarity. Below we
propose a different model and a more systematic approach to the problem.

A BAYESIAN APPROACH TO MODELING THE PROBABILITY
DISTRIBUTION

We expand P0(∆U) using Gram–Charlier polynomials, which are the products of Her-
mite polynomials and a Gaussian function [4] and are particularly suitable for describing
near–Gaussian functions. To ensure that P0(∆U) is always positive, we take

P0(∆U) =

( ∞∑
n=0

cnϕn (∆U)

)2

(6)

where cn is the n–th coefficients of the expansion and φn is the n–th normalized Gram–
Charlier polynomial, identical to the wave functions for the n–th excitation levels of the
quantum harmonic oscillator and related to the n–th Hermite polynomial by:

ϕn (x) =
1√

2nπ1/2n!
Hn (x)exp

(
−x2/2

)
(7)

The coefficients {cn} are constrained by the normalization condition for P0(∆U)∑
n

c2
n = 1 (8)

The expansion in (6) is complete and convergent. This nice, formal property is,
however, not particularly helpful in practice because only the first few coefficients in
the expansion can be determined from simulations with sufficient accuracy. This means
that (6), or any other expansion, is useful only if it converges quickly.

The above considerations raise a question: how to determine the optimal N and the
coefficients {cn}, n ≤ N in (6)? If the expansion is truncated too early, some terms
that contribute importantly to P0(∆U) are lost. On the other hand, terms above some
threshold carry no information, and only add noise to the probability distribution.

Our follow a standard Bayesian approach to find the optimal N . The data consist
of M statistically independent samples of ∆U collected in computer simulations. For
convenience, the energies are taken in units of β, rescaled to x = U/

√
2σ, where σ is

the variance of P0(∆U), and shifted such that zero of energy is equal to the average
∆U . The M -dimensional vector with the values of x and the N -dimensional vector with



the coefficients in the expansion (6) are denoted X and CN , respectively. The goal is
to calculate the posterior probability, P (N | X), that the data were generated from the
expansion (6) truncated after the first N +1 terms

P (N |X) =
P (X |N)P (N)

P (X)
. (9)

If the prior, P (N), is uniform for all N between 0 and Nmax the posterior becomes
proportional to the likelihood function, P (X |N)

P (N |X)∝ P (X |N). (10)

The probability, P (X | N) of generating data X given N depends on CN . Since we
are not interested in this dependence here, we marginalize CN

P (X |N) =
∫

P (X,CN |N)dCN =
∫

P (X | CN ,N)P (CN |N)dCN (11)

where dCN stands for dc0 . . .dcN and the second equality follows from the product rule.
Next, we expand P (X | CN ,N) around P (X | C0

N ,N), where C0
N stands for the N-

dimensional vector with the maximum likelihood (ML) coefficients, c0
n. To obtain C0

N

we find the extremum of lnP (X | CN ,N), subject to the normalization constraint (8).
The problem can be readily solved using Lagrange multipliers. We first note that for
statistically independent samples

P (X | CN ,N) =
M∏

µ=1

P (xµ | CN ,N) (12)

where P (xµ | CN ,N) is the probability of generating a sample point xµ from an expan-
sion of P0(∆U) to order N . After substituting the explicit form of P (xµ | CN ,N) from
(6), the function to be minimized is:

f(C,N) = 2
∑
µ

[ln
∑
n

cnϕn(xµ)]+λ
∑
n

c2
n. (13)

where λ is the Lagrange multiplier. For f(C,N) to be an extremum, its first derivatives
with respect to {cn} must vanish. This leads to a set of N +1 equations for {cn}

∑
µ

ϕm (xµ)∑
n cnϕn (xµ)

+λcm = 0 (14)

which are solved simultaneously with (8).
Equations (14) have a simple interpretation. If we apply the relation

1

M

∑
µ

f(xµ)≈
∫

f(x)P (x)dx. (15)

for a discrete sample of a function f(x) to the sum on the left hand side of (14) and take
advantage of orthonormality of ϕn we obtain



∑
µ

ϕm (xµ)∑
n cnϕn (xµ)

= M
∑
n

cn

∫
ϕm(x)ϕn(x)dx = Mcm. (16)

This means that (14) are N +1 equations that enforce orthonormality of ϕn sampled at
{x}. From these equations it also follows that λ =−M .

Returning to P (X | CN ,N), we first note that the direct expansion of this probability
density around P (X | C0

N ,N) diverges. Instead, we represent P (X | CN ,N) as:

P (X | CN ,N) = exp[lnP (X | CN ,N)] (17)

and expand lnP (X | CN ,N) in the Taylor series. This yields:

lnP (X | CN ,N) = lnP (X | C0
N ,N)+2

∞∑
k=1

(−1)k+1 1

k

∑
µ

(Sµ)k (18)

where

Sµ =

∑
m ∆cmϕm (xµ)∑

n c0
nϕn (xµ)

(19)

and ∆cn = cn− c0
n. If we truncate the expansion in (18) after second–order

P (X | CN ,N) = P
(
X | C0

N ,N
)
exp

(
2
∑
µ

Sµ−
∑
µ

S2
µ

)
. (20)

In the absence of the normalization constraint the linear term would vanish. In this
case, however, it does not, but it can be easily evaluated:

2
∑
µ

Sµ = 2
∑
m

∆cm

∑
µ

ϕm (xµ)∑
n c0

nϕn (xµ)
= 2M

∑
m

∆cmc0
m =−M

∑
m

∆c2
m. (21)

In the second equality we used (14), and in the third we took advantage of the relation
2
∑

n ∆cnc
0
n =−∑n ∆c2

n. The linear term can be represented in a matrix notation:

2
∑
µ

Sµ =−∆CTM∆C (22)

where ∆C is a N–dimensional vector with the coefficients ∆cn, ∆CT is its transpose
and M is a N ×N matrix, whose entries are Mδmn.

We can proceed similarly with the second–order term. Using (19) we obtain:∑
µ

S2
µ = ∆CTA∆C (23)

where A is a N ×N matrix, whose entries are:

Anm =
∑
µ

ϕn (xµ)ϕm (xµ)

[
∑

n c0
nϕn (xµ)]2

. (24)



After substituting (22) and (23) to (20) and defining Λ = A−M, we obtain an equation
for P (X | CN ,N) in a χ2 form

P (X | CN ,N) = P
(
X | C0

N ,N
)
exp

(
−∆CTΛ∆C

)
(25)

which we substitute to (11) to obtain

P (X |N) = P
(
X | C0

N ,N
)∫

exp
(
−∆CTΛ∆C

)
P (CN |N)dCN (26)

We take the prior, P (CN |N), to be uniform, subject to the constraint (8). This means
that it is uniform on a N -dimensional unit hypersphere and is zero otherwise. Since the
constraint has already been included in the equation through M we get:

P (X |N) = P
(
X | C0

N ,N
)∫

exp
(
−∆CTΛ∆C

)
dCN . (27)

This is a standard multivariate Gaussian integral that can be evaluated by calculating the
determinant or through diagonalization of Λ. For sample sizes that we deal with in real
simulations, the Gaussians are always quite sharp. Then, after integration we have:

P (X |N) = P
(
X | C0

N ,N
) N∏

n=0

2
√

π√
λ0 . . .λN

(28)

where λ0 . . .λN are the eigenvalues of Λ and the extra factor of 2 in front of
√

π follows
from the quadratic form of P0(∆U), which always yields two symmetric solutions for
C. More conveniently

lnP (X |N) = lnP
(
X | C0

N ,N
)
−
[
1

2

N∑
n=0

lnλn +N ln2
√

π

]
(29)

As expected, the solution for the logarithm of the posterior consists of two terms
which change oppositely with N . The first term, which represents the optimal (ML)
solutions, always increases with N towards its asymptotic value. The second term,
which represents an “Ockham razor" penalty for increasing the number of terms in the
expansion, decreases with N .

SIMULATION RESULTS

For a numerical test of (29) we chose a challenging case, in which P0(∆U) is broad and
clearly non–Gaussian. Instead of considering a real chemical system, we constructed a
synthetic P0(∆U), which resembled those of systems with ionic interactions, but was a
linear combination of 3 Gaussians, pi (∆U), with different mean values and variances:

P0(∆U) =
3∑

i=1

wipi (∆U) (30)

where wi was the weight of the i–th Gaussian, subject to the constraints wi≥ 0,
∑

wi = 1.
The mean values, 〈∆U〉i, variances, σi, and weights of each Gaussian were: (3.0, 4.0,



0.3), (-3.0, 7,0, 0.5) and (-6.0, 9.0, 0.2) The resulting P0(∆U) is shown in Fig. 1. The
main advantages of using a multi–Gaussian P0(∆U) are that it can be easily sampled
and that the free energy, ∆A, can be calculated exactly as:

∆A =− ln
3∑

i=1

wi exp
(
−〈∆U〉i +σ2

i /2
)

(31)

For this system we generated 20 datasets of 100,000 and 20 datasets of 1,000 sta-
tistically independent values of x. For comparison, we also generated 20 datasets of
100,000 values of x sampled from a Gaussian with the mean value of zero and σ = 8.
For each dataset, we calculated the free energy from (5) and from the expansion (6) for
0 ≤ N ≤ 15, with the ML coefficients C0

N determined from (14). The results averaged
over all 20 datasets, are displayed in Fig 2. As can be seen, the free energy decreases
nearly monotonically with N . Note that N = 0 corresponds to the Gaussian approxima-
tion for P0(∆U), and is equivalent to the second–order free energy perturbation theory.
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FIGURE 2. Left panel: the ML free energies calculated from (6) and averaged over 20 datasets as
functions of the number of terms, N in the expansion. The results for 100,000 and 1,000 values of
x for P0(∆U) described by (31) and for a single Gaussian are denoted by diamonds, squares and
triangles, respectively. The solid and dashed horizontal lines represent the exact free energies for the
two functions used. Right panel: a typical result for lnP (X | N) (triangles) lnP

(
X | C0

N ,N
)

(squares)
and the “Ockham penalty" (diamonds), calculated from (29), as functions of N .

Next, we calculated lnP (X | N) from (29) for each dataset. Its typical behavior is
shown in the right panel of Fig 2. It increases for small N , passes through a maximum
and then slowly decreases with N . From this dependence we identified the ML values of
N and determined the corresponding free energies. These energies were averaged over
20 datasets and the root mean square deviation (RMSD) was calculated. The results
are collected in Table 1. The free energies obtained directly from (5) poorly reproduce
the correct values of ∆A, as might be expected from Fig. 1. Also as expected, the
second–order (Gaussian) approximation is very good for the purely Gaussian P0(∆U),
but not for the asymmetric P0(∆U). In contrast, the ML estimate of ∆A for this P0(∆U)
approximates the exact free energy very well. For the large sample, the average ML value



of N is 7.2 with a small variance. For the small sample, ∆A is overestimated because
N is consistently slightly smaller than that for the large sample, presumably because the
small dataset contains less information. For the purely Gaussian case, the ML solution
for N fluctuates markedly around 4.2 and the estimated ∆A matches the exact value
poorer that the second–order formula.

Table 1. Free energies calculated using different approaches.

system/
sample   size Exact Eq.(5)

Gaussian
approximation ML

RMSD
(ML)

3G/100,000 -44.9 -20.5 -30.2 -43.7 1.2
3G/1,000 -44.9 -19.8 -30.5 -41.8 2.6

1G/100,000 -32.0 -23.1 -31.8 -34.3 2.1

Instead of using the ML value of N , one can terminate the series in (6) when the
statistical error on ϕn(x) becomes larger than its average over the sample. Interestingly,
this heuristic criterion yields similar results as a better justified ML criterion.

CONCLUSIONS

We have shown that modeling probability densities of ∆U as a series well suited to
describe Gaussian–like distributions, combined with a ML approach to determining the
number of terms and the coefficients of the expansion, yields markedly improved es-
timates of free energy differences between two states of a system. The improvement
is particularly evident in the most difficult cases when P0(∆U) is broad and skewed,
which means that the two states are fairly dissimilar. In such cases, the proposed method
is a highly promising alternative to more expensive strategies of stratification and impor-
tance sampling. The reduced cost makes the method particularly suitable, for example,
for computer aided drug design, in which the goal is to screen rapidly a large number of
potential drugs for binding with their protein target.

The modeling approach also represents a conceptual departure from the traditional
view that free energy differences can be reliably estimated only if configurations from
the low–∆U tail of P0(∆U) are adequately sampled. Instead, it is proposed that infor-
mation contained in the well sampled part of P0(∆U) might be sufficient to calculate
free energies, at least in the absence of persistent quasi non–ergodicities.
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