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Abstract. A continuum of coupled oscillators is considered, described by a continuous tensor
product of Hilbert spaces. The mode position Ux and the mode momentum Up are operators which
act collectively on all oscillators. They obey equations of motion which are very similar to those
of a harmonic oscillator. Q-functionals are used to introduce entropic quantities that describe
correlations among the oscillators. If the system is in an entangled state, the formalism can be used
to quantify concepts like the location of entanglement; and the speed with which the entanglement
propagates.
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INTRODUCTION

In a recent paper [1] we have introduced the concept of mode phase space in a system
comprised of a continuum of coupled oscillators. We have defined mode-position and
mode-momentum operators Ux and Up, which act collectively on all oscillators. The
expectation value of Ux gives the location of a quantum state in the chain of oscillators.
The expectation value of Up shows how fast the mode position changes with time. The
Ux, Up obey a commutation relation which leads to an uncertainty relation between the
uncertainties related to these operators ∆x and ∆p. From a physical point of view, most
of the quantum state is in the region (〈Ux〉−∆x,〈Ux〉+∆x) and oscillators outside this
region are close to the vacuum state. The propagation of a quantum state in the chain of
oscillators occurs with momenta in the interval (〈Up〉−∆p,〈Up〉+∆p).

The corresponding mode phase space Ux −Up is different concept from the phase
spaces of the individual oscillators. It describes the collective quantum behaviour of
all oscillators. Exponentials of Ux and Up perform mode displacements in it, i.e., they
translate a quantum state along the chain of oscillators; and they also change its mode
momentum. The mode displacements form a Heisenberg-Weyl group[1].

These ideas apply to all quantum states regardless of whether they are entangled
or not. But when the states are entangled, they can be used to quantify the concept
of entanglement location and propagation. The entanglement of the state is located
in the region (〈Ux〉 − ∆x,〈Ux〉+ ∆x) and propagates with momenta in the interval
(〈Up〉−∆p,〈Up〉+∆p).

From a mathematical point of view, the Hilbert space of our system is a continuous



tensor product of Hilbert spaces. There are interesting mathematical problems in this
case which have been discussed in [2, 3, 4, 5, 6]. In [1] we have used the exponential
Hilbert space approach [7] which links the formalism of a single harmonic oscillator to
the formalism of a continuum of oscillators.

In the present paper we review and expand further this work. In section II we introduce
various operators and discuss their commutators and their physical meaning. In section
III we discuss coherent states. In section IV we introduce partial traces, reduced density
matrices and entropies. They use multidimensional integrals in a tensor product of a
finite number of Hilbert spaces. In our case we have a continuous tensor product of
Hilbert spaces and they become functional integrals. Entropies can be defined in various
ways and here they are defined in terms of the Q functionals. In section V we discuss
the time evolution of these systems. We conclude in section VI with a discussion of our
results.

COLLECTIVE POSITION AND MOMENTUM OPERATORS

We introduce operators

Uφ =
∫

dxa†(x)φa(x) (1)

where φ is an operator acting on the Hilbert space of functions of x. We can show that

[Uφ,Uχ] = U[φ,χ] (2)

If φ1, ...,φN are generators of a Lie algebra then the Uφ1
, ...,UφN

form the same Lie
algebra.

We note that we do not consider operators of the form:

Wφ =
∫

dxa†(x)φa†(x); Vφ =
∫

dxa(x)φa(x) (3)

They do not obey Eq(2).
Special cases of the operators (1) are the mode position and momentum operators

Ux =
∫ ∞

−∞
dxxa†(x)a(x); Up = −i

∫ ∞

−∞
dxa†(x)∂xa(x) (4)

Other special cases of (1) are the operators

U1 = nT =
∫ ∞

−∞
dxa†(x)a(x); UN =

1

2

∫ ∞

−∞
dxa†(x)(x2 −∂2

x −1)a(x) (5)

nT is the total number of photons.
These operators are collective variables, acting on all oscillators. According to Eq(2)

they obey the commutation relation

[Ux,Up] = iU1; [Ux,U1] = [Up,U1] = 0 (6)



The commutators between the operator UN and the operators Ux and Up are:

[UN ,Ux] = −iUp; [UN ,Up] = iUx (7)

We have explained in [1] that the commutation relation of Eq.(6) leads to an uncer-
tainty relation. In order to quantify this we consider the operators

Ux2 =
∫

dxx2a†(x)a(x); Up2 = −
∫

dxa†(x)∂2
xa(x) (8)

We define the mode position uncertainty as:

∆x =





〈Ux2〉

〈nT 〉
−

(

〈Ux〉

〈nT 〉

)2




1/2

(9)

In a similar way we define the ∆p. The uncertainty relation states that

(∆x∆p)2 ≥
1

4
(10)

We stress that this uncertainty relation refers to the whole system and not to a particular
oscillator. Physically the expectation value of Ux gives the location of a quantum state in
the chain of oscillators in the sense that oscillators outside the region (〈Ux〉−∆x,〈Ux〉+
∆x) are close to the vacuum state. The expectation value of Up shows how fast the
mode position changes with time. The propagation of the quantum state in the chain of
oscillators occurs with momenta in the interval (〈Up〉−∆p,〈Up〉+∆p).

COHERENT STATES

Displacement operators are given by

D({z(x)}) = exp
[
∫ ∞

−∞
dx(z(x)a†(x)− z∗(x)a(x))

]

(11)

Using them we define coherent states as

|{z(x)}〉coh = D({z(x)})|0〉 (12)

where |0〉 is the vacuum in H . The total number of photons in these coherent states is

coh〈{z(x)}|nT |{z(x)}〉coh = (z(x), z(x)) (13)

where

(w(x), z(x)) ≡
∫ ∞

−∞
dxw∗(x)z(x) (14)

The overlap of two coherent states is:

coh〈{z(x)}|{w(x)}〉coh = exp
[

−
1

2
(w(x),w(x))−

1

2
(z(x), z(x))+(z(x),w(x))

]

(15)



The resolution of the identity in terms of these coherent states, is given by the functional
integral:

∫

D2[z(x)] |{z(x)}〉coh coh〈{z(x)}| = 1; D2[z(x)] =
∏

x∈R

d2z(x)

π
(16)

We consider a state described with the density matrix ρ. The corresponding Q-
functional is

Q[{z(x)}] =coh 〈{z(x)}|ρ|{z(x)}〉coh (17)

and obeys the relation
∫

D2[z(x)] Q[{z(x)}] = 1 (18)

In the case of a pure state |f〉

|f〉 =
∫

D2[z(x)] |{z(x)}〉coh f [{z(x)}]

f [{z(x)}] ≡ coh〈{z(x)}|f〉 (19)

we get

Q[{z(x)}] = |f [{z(x)}]|2. (20)

As an example we consider the coherent states |{w(x)}〉coh. Using Eq.(15) we find that
the corresponding Q-functional is

Q[{z(x)}] = exp [−(w(x),w(x))− (z(x), z(x))+2<(z(x),w(x))] (21)

For the vacuum, w(x) = 0 and the corresponding Q-functional is

Q[{z(x)}] = exp [−(z(x), z(x))] (22)

PARTIAL TRACES

We consider an interval I ⊂ R. Examples are I = (−∞,1) or I = (1,2)
⋃

(3,4), etc. We
introduce the ‘reduced Hilbert space’

H(I) =
⊗

x∈I

H(x) (23)

The term reduced indicates that x takes values in a subset of R. Many of the above
relations for states, in H , are also valid for states in H(I).

When x is restricted to an interval I , we use a notation which indicates the interval
explicitly. For example, we denote the coherent states in H(I) as |{z(x);x ∈ I}〉coh. It



is easily seen that the partial trace of the density matrix |{z(x)}〉coh coh〈{z(x)}| with
respect to the modes labeled with x ∈ R− I is

TrR−I [|{z(x)}〉coh coh〈{z(x)}|] = |{z(x);x ∈ I}〉coh coh〈{z(x);x ∈ I}| (24)

The overlap of these coherent states is given by:

coh〈{z(x);x ∈ I}|{w(x);x ∈ I}〉coh = exp[−
1

2
(w(x),w(x))I

−
1

2
(z(x), z(x))I +(z(x),w(x))I ] (25)

where

(z(x),w(x))I =
∫

x∈I
dxz∗(x)w(x) (26)

The resolution of the identity within H(I) is
∫

D2[z(x);x ∈ I] |{z(x);x ∈ I}〉coh coh〈{z(x);x ∈ I}| = 1I

D2[z(x);x ∈ I] =
∏

x∈I

d2z(x)

π
(27)

We consider a state described with the density matrix ρ. We call ρ(I) the reduced
density matrix which is the partial trace of ρ with respect to the modes labeled with
x ∈ R− I

ρ(I) = TrR−Iρ (28)

The corresponding Q-functional is

Q[{z(x);x ∈ I}] ≡ coh〈{z(x);x ∈ I}|ρ(I)|{z(x);x ∈ I}〉coh

=
∫

D2[z(x);x ∈ R− I] Q[{z(x)}] (29)

Using Eq.(18) we show that it obeys the relation
∫

D2[z(x);x ∈ I] Q[{z(x);x ∈ I}] = 1 (30)

We define the differential entropy corresponding to Q[{z(x);x ∈ I}] as

S(I) = −
∫

D2[z(x);x ∈ I] Q[{z(x);x ∈ I}] lnQ[{z(x);x ∈ I}] (31)

Let I1, I2 be two non-overlaping intervals. Then

J(I1, I2) ≡ S(I1)+S(I2)−S(I1∪ I2) ≥ 0 (32)

We note that eqs(27),(29),(30),(31) involve functional integrals. In practical calcula-
tions functional integrals can be calculated analytically in the special case of Gaussian
integrals. In the case of ‘almost Gaussian’ integrals we can perform perturbative tech-
niques. In more general cases we can use ‘lattice techniques’ where we approximate a
functional integral with a finite-dimensional integral which we calculate numerically.



Factorizable states

A state desrcibed with the density matrix ρ is factorizable if for every non-overlaping
intervals I1, I2

ρ(I1 ∪ I2) = ρ(I1)⊗ρ(I2) (33)

A direct consequence of this is that for factorizable states

r(I1, I2) ≡
Q[{z(x);x ∈ I1 ∪ I2}]

Q[{z(x);x ∈ I1}] Q[{z(x);x ∈ I2}]
= 1 (34)

and

J(I1, I2) = 0. (35)

For general states, the ratio r(I1, I2) is different than one and the J(I1, I2) is a positive
number. Both the r(I1, I2) and the J(I1, I2) can be used as measures of (classical and
quantum) correlations between the oscillators in the intervals I1 and I2.

TIME EVOLUTION

We consider the Hamiltonian

h = UN (36)

where UN has been given in Eq.(??). Using Eq.(2) we show that

∂tUx = i[h,Ux] = Up

∂tUp = i[h,Up] = −Ux (37)

They are similar to the equations of motion of a harmonic oscillator.
For coherent states we show that

exp [ith] |{z(x,0)}〉coh = |{z(x,t)}〉coh (38)

where

z(x,t) =
∫

z(y,0)K(y,x; t)dy; K(y,x; t) =
∑

N

hN (y)hN(x)eiNt (39)

Equivalent to Eq.(39) is the fact that z(x,t) obeys the Schrödinger equation

1

2

(

−∂2
x +x2

)

z(x,t) = i∂tz(x,t) (40)

Consequently

∂t|z(x,t)|2 = ∂xJx; Jx =
i

2
[z∗(x,t)∂xz(x,t)− z(x,t)∂xz∗(x,t)] (41)



|z(x,t)|2 is the density of photons and its integral over x gives the total number of
photons as we have seen in Eq.(13). Jx is current of photons between the various
oscillators and Eq(41) is the conservation relation. We stress that this is valid for the
operators of Eq.(1) that we use in this paper; it would not be valid for the operators of
Eq.(3).

Example

All of the above concepts apply to all states; regardless of whether they are entangled
or not. However if the states are entangled, they can be used to quantify the location and
propagation of entanglement. In order to exemplify this we consider a system described
with the Hamiltonian h of Eq.(36), which at t = 0 is in the following entangled state
which is a superposition of two coherent states:

|s(0)〉 = N [|{ζ1zgau(x;A)}〉coh + |{ζ2zgau(x;A)}〉coh]

zgau(x;A) = π−1/4 exp
[

−
1

2
x2 +21/2Ax−AAR

]

(42)

Here we consider coherent states with amplitude which in the x-representation, has
Gaussian distribution among the various modes. The complex factors ζ1, ζ2 have been
inserted so that the average number of photons in these coherent states is |ζ1|

2 and |ζ2|
2.

The normalization coefficient N is given by

N =
[

2+2e−
1

2
|ζ1−ζ2|2 cosφ

]−1/2
; φ = =(ζ∗

1ζ2) (43)

The state |s(0)〉 evolves in time as follows:

|s(t)〉 = N
[

|{ζ1zgau(x;Aeit)}〉coh + |{ζ2zgau(x;Aeit)}〉coh
]

(44)

In this example the expectation values 〈Ux〉 and 〈Up〉 and the corresponding uncertainties
are

〈Ux〉 = 21/2〈nT 〉|A|cos(θA + t); 〈Up〉 = 21/2〈nT 〉|A|sin(θA + t)

∆x = ∆p = 2−1/2 (45)

where

〈nT 〉 =
|ζ1 + ζ2|2

2+2e−
1

2
|ζ1−ζ2|2 cosφ

(46)

The entanglement is located mostly within the interval (〈Ux〉−∆x,〈Ux〉+∆x) which
performs an oscillatory motion in time.



DISCUSSION

We have considered a continuum of coupled oscillators with Hilbert space which is the
continuous tensor product of Hilbert spaces. We have introduced the mode position and
mode momentum operators Ux and Up which act collectively on all oscillators. Their
expectation values describe the average position of a quantum state in the line of oscil-
lators; and also the average momentum with which it propagates. For the Hamiltonian
of Eq.(36), we have shown in Eq.(37) that the equations of motion are similar to those
of a harmonic oscillator.

It is interesting to understand correlations and entanglement between the various os-
cillators in the present context. We have defined the entropic quantity J(I1, I2) of Eq.(32)
which is equal to zero for factorizable states. Non-zero values of J(I1, I2) indicate (clas-
sical and quantum) correlations between the oscillators in I1 and the oscillators in I2.
Further work is required in order to distinguish between classical and quantum correla-
tions in the present context.

The Ux and Up can be used to quantify the location of entanglement and the speed
with which entanglement propagates. For example, in the case considered in Eq.(44) the
entanglement is located mostly within the interval (〈Ux〉−∆x,〈Ux〉+ ∆x) defined in
Eq.(45) and oscillates in time. We have not defined any measures of entanglement and
further work is required in this direction.

The work can be used for the study of collective quantum phenomena in systems
comprised of an infinite number of oscillators.
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