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Abstract. The entropy rate of an ergodic homogeneous Markov chain taking only two values is
an explicit function of its transition probabilities. We study a plug-in estimator of this entropy rate
obtained from the observation of one trajectory with long length. Its exact asymptotic distribution
is given. The case of uniform transition probabilities is especially considered. A detailed numerical
study using simulation results is provided.
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INTRODUCTION

Markov chains and entropy have been linked since the introduction of entropy in prob-
ability theory in [12]. Shannon defined the entropy rate of anergodic homogeneous
Markov chain with a finite (or countable) state spaceE as the sum of the entropies
of the transition distributions(P (i, j))j∈E weighted by the probability of occurrence of
each statei according to the stationary distributionπ of the chain, namely

H(X) = −
∑

i∈E

π(i)
∑

j∈E

P (i, j) logP (i, j), (1)

with the convention0log0 = 0. He proved the convergence in probability of
1

n
logP(X1 = i1, . . . ,Xn = in) to H(X). Convergence in mean was proven in [9]

and almost sure convergence in [4]. See [8] and the references therein for details and
extensions to many other classes of stochastic processes.

The Shannon-entropy of distributions is widely used in all applications involving ran-
dom variables. Similarly, having an explicit form for the entropy rate of a Markov chain
allows one to consider maximum entropy methods. Through itslinks to Kolmogorov-
Sinai complexity, the entropy rate of an information sourcemeasures its degree of al-
gorithmic complexity. The entropy rate is also involved in coding and in compression
algorithms. See [6] and also [5] and the references therein.

When only observations of the process are available, estimation of the entropy rate
is required for using entropy in the above applications. Very few results exist in this
aim for Markov chains. Bhat [1] introduced estimation for explicit functions of the tran-



sition matrix which may be used for the entropy rate. Misevichyus [10] considered a
plug-in estimator of the entropy rate for stationary ergodic Markov chains with finite
state spaces. Mukhamedkhanova [11] stated different asymptotic properties of the plug-
in estimator for a two-state stationary ergodic chain, in the so-called series schemes: the
number of observed states is supposed to vary with the lengthof the observed trajectory.
In [5], the plug-in estimator using maximum likelihood estimators of the transition prob-
abilities and an empirical estimator of the stationary distribution of the chain was proven
to be consistent for any countable ergodic Markov chain, notnecessarily stationary. For
a finite state space and non uniform transition distributions, asymptotic normality holds,
but an explicit expression for the asymptotic variance cannot be given in general.

We specialize in the following in two-state Markov chains. Markov chains and more
generally stochastic processes taking values in a two statespace are well-known to
constitute a useful tool in modelling many real situations;they appear in numerous
applied fields including telecommunications networks, reliability, survival analysis, etc.

We consider a plug-in estimator of the entropy rate obtainedfrom maximum likeli-
hood estimators of the transition probabilities. We prove its strong consistency. Then,
we determine its exact asymptotic distribution with the speed of convergence: a normal
distribution for non uniform transition probabilities with speed

√
n, and aχ2(2) distribu-

tion for uniform transition probabilities with speed2n. We present a detailed numerical
study of these properties.

DEFINITIONS

We will consider an ergodic (that is, irreducible, positiverecurrent and aperiodic) homo-
geneous Markov chainX = (Xn) with a two-state space, sayE = {0,1}. Its transition
matrix isP = (P (i, j))i,j∈E with transition probabilitiesP (i, j) = P(Xn = j|Xn−1 = i),
for n ≥ 1, and its stationary distribution isπ = (π(i))i∈E, satisfying

∑
i∈E π(i)P (i, j) =

π(j), for j ∈E. The chain is stationary ifπ is the initial distribution of the chain, that is,
P(X0 = i) = π(i), and thenP(Xn = i) = π(i) for all n.

Let us setP (0,1) = p andP (1,0) = q. The transition matrix of the chain is

P =

(
1−p p

q 1− q

)
.

The stationary distribution satisfiesπP = π, so that

π(0) =
q

p+ q
and π(1) =

p

p+ q
.

For a two-state chain, the entropy rate of the chain given by (1) can be written as an
explicit functionh(p,q), namely

H(X) = h(p,q) = π(0)Sp +π(1)Sq =
q

p+ q
Sp +

p

p+ q
Sq,

where

Sp = −p logp− (1−p) log(1−p) and Sq = −q log q− (1− q) log(1− q).
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FIGURE 1. The entropy rate of a two-state Markov chain

The graph of this function is shown in Figure 1. The dissymmetry between the cases
p = q = 0 andp = 1 = 1− q appears clearly.

PROPERTIES OF THE ESTIMATOR

Suppose we are given one observation of the chain, say(X0, . . . ,Xn). Let us consider
the following empirical estimators of the transition probabilities P (i, j),

P̂n(i, j) =

∑n

m=1
11{Xm−1=i,Xm=j}∑n

m=1
11{Xm=i}

, i, j ∈ E,

with P̂n(i, j) = 0 when
∑n

m=1
11{Xm=i} = 0. It is well-known that for a finite number of

states, they are maximum likelihood estimators.
Replacing the probabilities by their estimators, we get theplug-in estimator of the

entropy rate of the chain, that is

ĥn = h(P̂n(0,1), P̂n(1,0)). (2)

For a general countable state spaceE, the stationary probabilities cannot be expressed
as explicit functions of the transition probabilities, andhence have to be estimated
separately, for example by their empirical estimatorsπ̂n(i) = 1

n

∑n

m=1
11{Xm=i} for i∈E.

A plug-in estimatorĤn of the entropy rate is then obtained by replacing in (1) the
transition probabilitiesP (i, j) by P̂n(i, j) and the stationary probabilitiesπ(i) by π̂n(i),
for i, j ∈ E. In [5], Ĥn is proven to be strongly consistent.



For a two-state Markov chain, since the entropy rate is an explicit function of the
transition probabilities, the plug-in estimatorĥn is easily shown to be consistent.

Proposition 1 LetX be an ergodic homogeneous two-state Markov chain. The plug-in
estimator̂hn of the entropy rateH(X) given in(2) is strongly consistent.

Proof As proven in [3], the estimatorŝPn(i, j) are strongly consistent fori, j ∈E. More-
over, the functionh is clearly a continuous function. Therefore, the strong consistency
of ĥn is a straightforward consequence of the continuous mappingtheorem (see, e.g.,
[2]). �

Misevichyus [10] considers the estimatorĤn of the entropy rate for any finite state
space, but his proof of the asymptotic normality is incomplete. In [5], Ĥn is proven
to be asymptotically normal when the transition probabilities are not uniform. Due
to the numerous correlations between the involved variables, the computation of the
asymptotic variance is not carried through in general. For atwo-state Markov chain, the
exact asymptotic distribution of̂hn can be obtained.

Proposition 2 Let X be an ergodic homogeneous two-state Markov chain with non
uniform transition probabilities. Then

√
n[ĥn −H(X)] converges in distribution when

n tends to infinity to a normal distribution with mean zero and variance

σ2 = γ2

0
[∂1

1
h(p,q)]2 +γ2

1
[∂1

2
h(p,q)]2,

where
∂1

1
h(p,q) =

q

(p+ q)2
[Sq −Sp]−

q

p+ q
log

p

1−p

and
∂1

2
h(p,q) =

p

(p+ q)2
[Sp−Sq]−

p

p+ q
log

q

1− q
.

Proof The column vector
√

n(P̂n(0,1)− p, P̂n(1,0)− q) is proven in [3] to converge
in distribution whenn tends to infinity to a centered Gaussian vector with covariance
matrix

Γ =

(
γ2

0
0

0 γ2

1

)
,

where

γ2

0
=

p(1−p)

π(0)
=

p(1−p)(p+ q)

q
and γ2

1
=

q(1− q)

π(1)
=

q(1− q)(p+ q)

p
.

By a direct application of the delta method (see, e.g., [2]),we know that
√

n[ĥn−H(X)]
is asymptotically normal, with mean zero and variance

σ2 =
(
∂1

1
h(p,q),∂1

2
h(p,q)

)
Γ

(
∂1

1
h(p,q),∂1

2
h(p,q)

)′
,

where∂v
uh denotes thev-th order differential with respect to theu-th variable of the

functionh.



We compute

∂1

1
h(p,q) = −[∂1

1
π(0)]Sp−π(0)[∂1

1
Sp]− [∂1

1
π(1)]Sq,

with ∂1

1
π(0) = ∂1

1
π(1) = q/(p+ q)2. By computing symmetrical expressions for∂1

2
π(0)

and∂1

2
π(1), and∂2

2
h(p,q), we get the result. �

For non uniform transition probabilities, the asymptotic variance is naturally esti-
mated by

σ̂2

n = γ2

0
[∂1

1
h(P̂n(0,1), P̂n(1,0))]2 +γ2

1
[∂1

2
h(P̂n(0,1), P̂n(1,0))]2.

Thanks to the strong consistency of the estimator of the transition probabilities, this
estimator is strongly consistent too. Thus we get that

√
n

σ̂n

[ĥn −H(X)]

is asymptotically standard normal.

If the transition probabilities are uniform, the entropy rate under the constraintπP = π
is maximum (see [7]), the gradient is degenerated and the delta method cannot be
applied. To our knowledge, no result exist in the literatureconcerning the asymptotic
distribution of the plug-in estimator of the entropy rate obtained from the observation
of one long trajectory of the Markov chain. For a two-state chain, convergence to a
χ2(2)-distribution holds, as stated in the following result.

Proposition 3 LetX be an ergodic homogeneous two-state Markov chain with uniform
transition probabilities. Then2n[ĥn −H(X)] converges in distribution whenn tends to
infinity to aχ2(2)-distribution.

Proof For any transition matrix, sincêP (0,1) converges almost surely top andP̂ (1,0)
to q whenn tends to infinity, the Taylor’s expansion forh(p,q) at (p,q) implies that

ĥn = H(X)+ [∂1

1
h(p,q)][P̂ (0,1)−p]+ [∂1

2
h(p,q)][P̂ (1,0)− q]

+
1

2
[∂2

1
h(p,q)][P̂ (0,1)−p]2 +

1

2
[∂2

2
h(p,q)][P̂ (1,0)− q]2

+[P̂ (0,1)−p]2εi([P̂ (0,1)−p]2)+ [P̂ (1,0)− q]2εi([P̂ (1,0)− q]2),

where the remainder converges to zero almost surely whenn tends to infinity. We
compute

∂2

1
h(p,q) =

p

(p+ q)3
(Sp −Sq)+

2q

(p+ q)2
log

p

1−p
− q

(p+ q)p(1−p)
,

∂2

2
h(p,q) =

q

(p+ q)3
(Sq −Sp)+

2p

(p+ q)2
log

q

1− q
− p

(p+ q)q(1− q)
.
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FIGURE 2. Punctual convergence of the plug-in estimator

For uniform transition probabilities, that isp = q = 0.5, and henceπ(0) = π(1) = 0.5,
the term of order one is null. Moreover, firstSp = Sq = 0 and log[q/(1− q)] = 0, and
secondq/(p+ q)q(1− q) = 1/γ0 andp/(p+ q)q(1− q) = 1/γ1, thus

ĥn = H(X)− 1

2γ2

0

[P̂ (0,1)−p]2− 1

2γ2

1

[P̂ (1,0)− q]2

+[P̂ (0,1)−p]2εi([P̂ (0,1)−p]2)+ [P̂ (1,0)− q]2εi([P̂ (1,0)− q]2).

Since
√

n[P̂ (0,1)− p]/γ0 and
√

n[P̂ (01,0)− q]/γ1 are asymptotically standard nor-
mal and are independent, the conclusion follows. �

SIMULATION

For illustrating the above results for non uniform transition probabilities, we have chosen
to consider a two-state Markov chain with transition probabilities p = 0.2 andq = 0.3.

Figure 2 shows the punctual convergence of the plug-in estimator forn = 10 to 5000
by steps of 10. We have first simulated a trajectory with length 5000 of the chain. Then
we have computed̂hn for 10 ≤ n ≤ 5000 from this trajectory.

Figure 3 shows the bias and the root mean squared error of the plug-in estimator for
100 ≤ n ≤ 5000 by steps of 10, whereK = 1000 trajectories have been simulated for
each value ofn. The bias and the root mean squared error (RMSE) of the estimator ĥn

are computed by

Bias= H(X)− 1

K

I∑

k=1

ĥk
n and RMSE=

√√√√ 1

K−1

K∑

k=1

[
ĥk

n −
1

K

K∑

k=1

ĥk
n

]2

,



0 1000 2000 3000 4000 5000

−
0.

00
8

−
0.

00
6

−
0.

00
4

−
0.

00
2

0.
00

0

N

B
IA

S

0 1000 2000 3000 4000 5000

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

N

R
M

S
E

Bias RMSE

FIGURE 3. Bias and RMSE of the plug-in estimatorĥn

whereĥk
n is the estimator ofH(X) for thek-th trajectory.

Figure 4 shows the empirical distribution function of
√

n[ĥn −H(X)]/σ̂n compared
to the standard normal distribution function for differentvalues ofn between10 and
1000, forK = 500 simulated trajectories for each value ofn.

For uniform transition probabilities, that isp = q = 0.5, Figure 5 shows the empirical
distribution function of2n[ĥn −H(X)] compared to theχ2(2)-distribution function, for
n = 1000 andK = 1000 simulated trajectories.

These numerical results show the good behavior of the plug-in estimator, as well in
the non uniform as in the uniform case.
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