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Abstract. The diagnostic set-up for Wendelstein 7-X, a magnetic fusion device presently under
construction, is currently in the design process to optimize the outcome under given technical
constraints. Compared to traditional design approaches, Bayesian Experimental Design (BED)
allows to optimize with respect to physical motivated design criterions. It aims to �nd the optimal
design by maximizing an expected utility function that quanti�es the goals of the experiment. The
expectation marginalizes over the uncertain physical parameters and the possible values of future
data. The approach presented here bases on maximization of an information measure (Kullback-
Leibler entropy). As an example, the optimization of an infrared multichannel interferometer is
shown in detail. Design aspects like the impact of technical restrictions are discussed.
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INTRODUCTION

Nuclear fusion in high temperature plasmas is considered to be one of the most promis-
ing candidates for future energy sources. Magnetic fusion devices like the Wendelstein
7-X stellarator, presently under construction, provide data from complementary and re-
dundant measurements. The design of plasma diagnostics is a typical task to be resolved
along the preparation of fusion experiments. The design process has to meet with re-
quirements like highest accuracy of measurements, high resolution, robustness and ex-
tensibility, as well as with constraints such as accessibility or economic restrictions. The
mathematical framework of Bayesian probability theory offers the tools to cover these
requirements consistently and provides a quanti�cation of the design result, which al-
lows to compare different diagnostic set-ups directly.

BAYESIAN EXPERIMENTAL DESIGN

The BED approach is based on decision theory and was proposed by Lindley [1]. An
appropriate utility function is chosen �rst re�ecting purpose and costs of an experiment.
For the quanti�cation of the utility of a set-up the Kullback-Leibler distanceUKL is used
as a measure for the information gain from the experiment. It compares the knowledge
- or better: ignorance - on a quantity of interest f before a measurement with the



knowledge after data D are taken:

UKL(D,h) =
Z

P(f|D, h) · log
(
P(f|D, h)

P(f)

)
df (1)

The uncertainties are encoded using probability density functions P. The utility func-
tion UKL depends both on the data D and the design parameters h, which are to be
optimized.
Marginalization over the range of expected data yields the expected utility function

EU ,

EU(h) =
Z

P(D|h)UKL(D,h)dD, (2)

now only a function of the design parameters h. In Bayesian Experimental Design the
EU is maximized with respect to h.
Using Bayes theorem the EU is given by

EU(h) =
Z Z

P(f)P(D|f, h) · log
(
P(D|f, h)
P(D|h)

)
df dD, (3)

where the forward function in the likelihood P(D|f, h) can be understand as a �virtual�
diagnostic. The evidence P(D|h) is calculated by

P(D|h) =
Z
df P(D|f,h) ·P(f). (4)

In the conventional approach of BED P(f) is a prior function for all unknown parame-
ters. The design of the diagnostic is optimized for the complete range of f. If one is
interested in an optimal diagnostic for a subspace of the parameters only, we propose to
modify the EU by an appropriate weighting function (see below).
The expected utility function as formulated here is an absolute measure for the

information gain, it is expressed in bit by using the base-2 logarithm.
A overview on classical and Bayesian design is given in [2]. A more detailed discus-

sion of the BED approach can be found in [3]. Previous results for fusion diagnostics
are shown in [4] and [5].

Limited range of interest

In some cases one is interested in an optimal design for a subset of the data only.
Therefore, we propose to modify the expected utility by an appropriate weighting func-
tion. In experimental design, the utility function U(D,h) is the mathematical represen-
tation of preferences over an alternative set of designs h with uncertain output D. We
choose the Kullback-Leibler divergence to quantify the information gain for the data D
measured by design h. If we are not interested in all possible outcomes of the exper-
iment, we will set the utility for those outcomes to zero. Since the outcome D of an
experiment is usually subject to noise, we might want to specify our interest in the pa-
rameter space f. Let us assume Pw(f) represents a subset and weighting of the parameter



space for which we want to have an optimal design. Then,

Pw(D|h) =
Z
df P(D|f,h) ·Pw(f) (5)

is the modi�ed weighting function representing all data generated by the parameters h
which we are interested in. Please note, that, due to the measurement uncertainty, the
data might be experimental outcome of parameter values not of interest.
This changes the expected utility to

EU(h) =
Z

dD Pw(D|h)
Z

df
P(f)P(D|f, h)

P(D|h)
· log

(
P(D|f, h)
P(D|h)

)
, (6)

where one now has two expressions for the parameters of interest f: On one hand, P(f)
is the prior distribution for f, describing the uncertainty about the parameters. Pw(f) on
the other hand de�nes the interest on a subset of f by generating the weighting function
Pw(D|h) (eqn. 5).
The effect can be demonstrated on a simple academic example: We assume an exper-

iment with two different states, f1 and f2. The goal of the experiment is to identify the
the state. The probability to measure the state is given by the relation:

P(D = f1|f1) = h; P(D = f2|f1) = 1−h (7)

P(D = f2|f2) = h; P(D = f1|f2) = 1−h,

where h : (0≤ h≤ 1).
If one is interested in identifying f1 only, the range of interest is given by Pw(f1) = 1,

Pw(f2) = 0. Then,
Pw(D|h) = P(D|f1,h). (8)

For the prior knowledge about fwe assume to be totally ignorant: P(f1) = P(f2) = 1
2
.

This leads to

P(D|h) = 1/2 · [P(D|f1,h)+P(D|f2,h)]
= 1/2, (9)

the evidence is independent of D and h.
The utilityUKL (eqn. 1) is then given by

UKL(D,h) =
2

å
i=1

P(D|fi ,h) ·1/2
1/2

log

[
P(D|fi ,h)

1/2

]
=

2

å
i=1

P(D|fi ,h) log [2P(D|fi ,h)] , (10)

therefore the expected utility becomes

EU(h) =
2

å
j=1

P(D j |f1,h)
2

å
i=1

P(D j |fi ,h) log
[
2P(D j |fi ,h)

]
= (1−h) log [2(1−h)]+h log(2h). (11)



This expression provides the results as expected:

� For h = 0.5 (maximum measurement uncertainty) one gets EU = 0, because the
states cannot be resolved.

� The maximum information gain is obtained by h = 0 (no uncertainty) and h = 1
(exact the inverse result), the expected utility is EUmax= log2.

� In case of the base-2 logarithm the maximum information gain is ln2= 1 bit, which
is the correct information gain from a two state experiment.

This academic example shows that it might be useful to choose an appropriate ex-
pected utility function by a weighting function if one is interested only in a subset of the
data space.

DESIGN OF A MULTICHANNEL INTERFEROMETER

An interferometer provides a precise and robust measurement of the electron density of
a plasma. The detected phase shift of a probing laser beam is proportional to l

R
n(r)dl,

where l is the wavelength of the probing beam and n(r) the electron density distribution,
integrated along the line of sight r(l). An interferometer is used for plasma control and,
using several beams, for reconstruction of density pro�les.
Design parameters are given by the geometrical position of the probing laser beams.

Although not all positions are feasible due to the technical restrictions of the plasma
vessel, it is useful to optimize the diagnostic without these boundary conditions �rst.
For the creation of virtual data a parametrized density function is used:

n(r) = f1 ·
1+f4 · (r/rmax)2

1+
(

(r/rmax)2

f2
2

)f3
(12)

The physical parameters f1 . . .f4 represent the maximum density, position of the edge
gradient, steepness and bulge of the density distribution.
It has been shown that the error statistics of the measurement has crucial impact on

the expected utility [5]. For the examples presented here, a constant error level s is
chosen which is in the order of a few percent of typical interferometer data. For the error
statistics a Gaussian distribution is assumed, the likelihood is given by:

P(D|f,h) =
1

s
√
2p

· exp
[
−(l

R
n(r)dl−D)2

2s2

]
(13)

The prior distributions are assumed to be uniformly distributed for every parameter
fi . Because we are interested in the whole parameter range, the conventional ansatz for
BED can be used (eqn. 3), so that Pw(D|h) = P(D|h).
For parametrization of the line of sight, which was the target of the optimization pro-

cess, two angles represent the start (h1) and end point (h2) of the chord on a circumvent-
ing circle around the plasma. The expected utility is determined with respect to these
angles (cf. Fig 1 lower panels). h1 and h2 are exchangeable, resulting in a symmetric
expected utility. For beams which do not cross the plasma, the expected utility is zero.



FIGURE 1. Optimized chords for interferometer at W7-X (toroidal angle 195◦, upper row) and ex-
pected utility (lower row) for estimation of maximum density (a), gradient position (b), steepness (c) and
bulge (d). The star symbol in the EU plot corresponds to the beam line in the density plot. The data space
is generated by a variation of (a) f1 = 0 . . .5× 1020m−3, (b) f2 = 0.6 . . .0.95, (c) f3 = 1 . . .30 and (d)
f4 = −1 . . .0. The insets in the upper row show the corresponding density pro�le variation where the
maximum ordinate is ne = 1×1020m−3 and the abscissas are effective radii (re f f /a).

Figure 1 shows the design results for four single beams, optimized to estimate the
parameters of interest f1 - f4. Therefore, the EU was calculated for a single parameter,
the others were kept constant, respectively . The beam line in the density plots (upper
row) corresponds to the maximum of the expected utility. The EU is displayed in �gures
of the two angles h1 and h2 (lower row).
As one can see from the results, the calculated EU is determined by the shape of the

plasma. E.g. for the estimation of maximum density (Fig. 1(a)) a beam traversing the
plasma center on the longest possible way yields the maximum of the EU . The optimal
beam line in this case represents the maximum signal-to-noise ratio (SNR) chord. Since
the effects of the other parameters are most distinct at the plasma edge, the resulting
reconstruction has maximum information gain for sightlines traversing the edge region.

FIGURE 2. Two similar beam lines for estimation of steepness and bulge (left), slightly different result

after combined optimization (middle), complete 4-channel interferometer (right).

For the estimation of steepness (f3) and bulge (f4) of the density distribution (Fig.
1 (c) and (d)) a similar beam line results from the optimization. So, as a next step, two



beam lines are optimized in one step by integrating over both parameters of interest (f3
and f4). Figure 2 shows the result of the combined optimization of the two similar beam
lines. The combined optimization led to a slightly different result compared with the
single beam optimization.
As mentioned before, no technical boundary conditions were taken into account so

far. Figure 3 indicates accessible chords in �gures of the design parametrization chosen.
For the accessible regions optimal beam line position resulting from the maximum of
the EU is identical for all parameters fi . The effect of the technical restrictions can be
quanti�ed and compared to unrestricted access to the plasma.

FIGURE 3. Technical boundary conditions: port system on W7-X at a toroidal angle of 195◦ (left); EU
with allowed regions (lightened areas, middle); optimal beam line for all parameters fi (right).

CONCLUSION AND OUTLOOK

As an extension to the conventional approach of Bayesian experimental design approach
an ansatz for a limited parameter range of interest is presented. Future work will adapt
and evaluate this for the design of plasma diagnostics, so that the design can be focused
on physical interesting and relevant scenarios.
Furthermore, results for the design of a multichannel interferometer are shown. An ex-

tension to eight channels and the consideration of more boundary conditions is planned
as a next step.
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