
MARGINALIZED MAXIMUM A
POSTERIORI HYPER-PARAMETER

ESTIMATION FOR GLOBAL OPTICAL
FLOW TECHNIQUES

Kai Krajsek and Rudolf Mester

Visual Sensorics and Information Processing Lab,
Institute for Computer Science,

J. W. Goethe University,
Robert Mayer Str. 2-4, 60054 Frankfurt am Main, Germany

Abstract. Global optical flow estimation methods contain a regularization parameter (or prior and
likelihood hyper-parameters if we consider the statistical point of view) which control the tradeoff
between the different constraints on the optical flow field. Although experiments (see e.g. Ng
et al. [Ng and Solo(1997)]) indicate the importance of the optimal choice of the hyper-parameters,
only little attention has been focused on the optimal choice of these parameters in global motion
estimation techniques in literature so far (the authors are only aware of one contribution [Ng and
Solo(1997)] which attempts to estimate only the prior hyper-parameter whereas the likelihood
hyper-parameter needs to be known). We adapt the marginalized maximum a posteriori (MMAP)
estimator proposed in [Mohammad-Djafari(1995)] to simultaneously estimating hyper-parameters
and optical flow for global motion estimation techniques. Experiments demonstrate the performance
of this optimization technique and show that the choice of the regularization parameter/hyper-
parameters is an essential key-point in order to obtain precise motion estimates.
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INTRODUCTION

Motion estimation in image sequences is of crucial importance in computer vision as
well as in image processing with a wide range of applications spanning from robot nav-
igation over medical image analysis to video compressions. The motion of a single ob-
ject, i.e. its displacement vector from frame to frame, which is inferred from brightness
changes in the image sequence is denoted as the optical flow vector. The set of all optical
flow vectors is called the optical flow field. Optical flow estimation methods with a prior
term that couples all optical flow vectors are usually characterized as global methods. In
this contribution, we develop a marginalized maximum a posteriori (MMAP) estimator
for simultaneous estimation of hyper-parameters of the likelihood term as well as of the
prior term and the optical flow field. The optimal hyper-parameters can be estimated
without any prior knowledge or assumption of the current optical flow field, but due to
the Bayesian framework, prior knowledge could also be incorporated, if needed. Lit-
tle attention has been focused on the optimal choice of the regularization parameter in
motion estimation techniques in literature so far (the authors are only aware of one con-
tribution [Ng and Solo(1997)]). Some authors even assume that the optimal choice of



the regularization parameter is of minor importance [Bruhn et al.(2005)]. In contradic-
tion to this assumption, obviously is the different value of the regularization parameter
which has been proposed by different authors (0.5 in [Horn and Schunck(1981)], 100 in
[Barron et al.(1994)]) and the dependency of the motion estimate on the regularization
parameter (as demonstrated in [Barron et al.(1994), Ng and Solo(1997)]). But the pro-
posal of a certain value of the regularization parameter is meaningless since its optimal
value depends on image statistics, on the image noise statistics as well as on the statistics
of the optical flow field [Krajsek(2006)]. Experiments demonstrate the performance of
this optimization technique and show that the choice of the regularization parameter is
an essential key-point in order to obtain precise motion estimation.

DIFFERENTIAL MOTION ESTIMATION

The general principle behind all differential approaches to motion estimation is that
the conservation of some local image characteristics throughout its temporal evolution
is reflected in terms of differential-geometric entities on the space-time signal s(x),
x = (x,y, t)T . In its simplest form, the assumed conservation of brightness along the
motion trajectory through space-time leads to the well-known brightness constancy
constraint equation (BCCE), where g denotes the gradient of the gray value signal s,
uh = (ux,uy,1)T the homogenous form of the direction of motion and u = (ux,uy)

T the
optical flow field

gTuh = 0 . (1)

Since it is fundamentally impossible to solve for uh by a single linear equation (aperture
problem), additional constraints have to be considered. Whereas local methods mini-
mize an error function over a local area V ⊂A assuming a certain motion model in this
neighborhood, global methods [Horn and Schunck(1981), Weickert and Schnörr(2001),
Black and Anandan(1993)] estimate the optical flow field by minimizing an error func-
tional (or error function if u is considered on a discrete grid) over the whole region of
interest in space-time. The necessary additional constraint is incorporated by a regular-
ization term ρ(u) (ρ denotes an operator acting on u) imposing supplementary infor-
mation on the solution, e.g. the optical flow field should be smooth and should not vary
abruptly [Horn and Schunck(1981)]. The regularization parameter λ specifies the influ-
ence of the regularization term ρ(u) relative to the data term ψ

(
gTuh

)
, (ψ=real positive

function). The optical flow field is estimated by minimizing

J(u) =
∫
A

(
ψ

(
gTuh

)
+λρ(u)

)
dx (2)

with respect to the optical flow field u. Since the introduction of regularization
in motion estimation by Horn and Schunk [Horn and Schunck(1981)], a large
class of regularization terms has been examined (for an overview we refer to
[Weickert and Schnörr(2001)] and to the references therein). But also new data terms
have been proposed [Black and Anandan(1993)]. Recently, a combination of global
and local constraints (proposed by Bruhn et al. [Bruhn et al.(2005)], which forms the



combined local-global (CLG) method) has been exemplified to increase precision as
well as robustness against noise.

BAYESIAN MOTION ESTIMATION

In a Bayesian formulation (see e.g. [Simoncelli et al.(1991)]), the optical flow is esti-
mated via a probability density function pdf which connects the observable signal or
its gradient with the entity of interest, the optical flow. In order to design such a pdf,
we assume a regular grid in space-time considering only signal values and optical flow
vectors on the knots of the grid. Since N knots in space-time are isomorphic to the
Euclidian space IRN , the signal and the optical flow field can be expressed by a set of
vectors s ∈ IRN and u ∈ IR2N . The approximated gradients w of the optical flow com-
ponents u as well as the approximated gradients g of the signal components s can be
written in compact matrix vector equations w = Hu ∈ IR6N and g = Ps ∈ IR3N . The
matrices P and H encode the approximation schemes of the gradient computation by
finite differences of values at neighborhood positions. In the Bayesian framework, not
only the gradients g = (g(x1),g(x2), ...,g(xN)), but also the estimated parameters u are
considered as realizations of random vectors with corresponding pdfs p(u) and p(g),
respectively. Prior knowledge about u is incorporated into the estimation framework
via the prior pdf p(u). The maximum a posteriori (MAP) estimator infers the optical
flow field by maximizing the posterior pdf p(u|g) or minimizing its negative logarithm.
Using Bayes’ law, this leads to

û = argmin
u
{− ln(p(g|u))− ln(p(u))} . (3)

The term in the bracket on the right side of equ.(3) is denoted as the objective function L.
For exponential pdfs with partition functions ZL(α), Zp(β), energies JL(α) and Jp(β)
and corresponding hyper-parameters α, β, the objective function becomes

L= JL(α)+Jp(β)+ ln(ZL(α)Zp(β)) . (4)

After discussing the explicit form of the likelihood energy and the prior energy for the
case of motion estimation, we develop a method for optimizing the hyper-parameters
directly from the observable data. Since all variational methods are equivalent to a
corresponding Bayesian formulation [Krajsek and Mester(2006)] and the regularization
parameter corresponds to the ratio of the hyper-parameters α, β, our approach allows to
optimize the regularization parameters of global optical flow methods in general.

LIKELIHOOD FUNCTIONS AND PRIOR DISTRIBUTIONS FOR
MOTION ESTIMATION

In Bayesian estimation, the relation between the observed data g and the optical flow
field u has to be established by the likelihood function p(g|u). The error εtj in the
temporal gradient components ǧtj at position j is here approximated as being identical
independent noise which follows a Gaussian distribution, gtj = ǧtj + εtj , whereas the



spatial gradient components gsj := (gxj,gyj) are assumed to be error free. The BCCE
gTj uhj = εtj changes accordingly. We obtain the likelihood function p(gt|u,gs) by
expressing each realization of the random variable εtj in the joint pdf p(εt) =

∏N
j=1 p(εtj)

by the corresponding BCCE

p(gt|u,gs) =
1

ZL(α)
e−α

∑N

j=1
ψ1(||gT

j uhj ||2) , (5)

where ψ1(x) is a positive symmetric function that is ψ1(x) = x for Gaussian noise. If
the optical flow field can be assumed to be constant within spatial neighborhoods and
the errors εtj within each of these regions are i.i.d Gaussian noise, the likelihood func-
tion can be derived as an expression depending on the structure tensors Cgj with the
energy function JL = α

∑N
j=1 u

T
hjCgjuhj . The robust version of the likelihood energy

function reads JL = α
∑N
j=1ψ1

(
uThjCgjuhj

)
. The prior pdf encodes our prior informa-

tion/assumption of the optical flow field. The prior pdf corresponding to the smoothness
assumption reads

p(u) =
1

Zp(β)
e−β

∑N

j=1
ψ2(||w2

j ||
2) , (6)

where ψ2 is again a positive symmetric function.

MARGINALIZED MAXIMUM A POSTERIORI
HYPER-PARAMETER ESTIMATION

The advantage of the Bayesian formulation of the motion estimation problem is that
not only the optical flow but also hyper-parameters can be included into the estimation
procedure. Firstly, introduced by MacKay [MacKay(1992)] in the context of interpola-
tion, the Bayesian hyper-parameter estimation techniques have been applied to different
kind of problems. Other techniques for hyper-parameter estimation have been devel-
oped as well but as mentioned in the introduction, only one [Ng and Solo(1997)] of
these has been derived for motion estimation so far. The drawback of the method of
Ng et al. is its computational cost: a full search in parameter space is necessary to ob-
tain the optimal regularization parameter. Furthermore, only one hyper-parameter can
be estimated which corresponds to the prior hyper-parameter in our approach. Thus, it
is necessary to know or estimate otherwise the hyper-parameter α which depends on the
noise of the gradient field [Krajsek and Mester(2006)]. On the contrary, our approach
allows the estimation of all hyper-parameters directly from the observable data. How-
ever, if the noise distribution is known, α can be computed [Krajsek and Mester(2006)]
and it is only necessary to estimate β. Based on the approach of Mohammad-Djafari
[Mohammad-Djafari(1995)], we derive a marginalized maximum a posteriori (MMAP)
hyper-parameter estimator for the case of motion estimation which estimates hyper-
parameters and the optical flow field simultaneously. The main idea of our approach
is to approximate the likelihood function p(g|u,α) as well as the prior pdf p(u|β) by
Gaussian distributions (if they are not already Gaussian) using a Taylor expansion with



respect to u up to second order of the logarithm of the corresponding pdf. The joint
pdf p̃(u,g|α,β) of the gradient field and the optical flow field is then obtained by the
product of the approximated prior pdf p̃(u|β) and the approximated likelihood function
p̃(g|u,α)

p̃(u,g|α,β) = p̃(g|u,α)p̃(u|β) , (7)

which is again a Gaussian function with respect to the optical flow u and therefore
analytically integrable. Furthermore, the partition function Z̃(α,β) = Z̃L(α)Z̃p(β) of the
joint pdf is the product of the partition functions of the Gaussian likelihood function and
Gaussian prior pdf and thus also analytically tractable. In the current approximation, the
likelihood energy JL as well as the prior energy Jp are expanded around their individual
minimum, which are not known a priori. In order to obtain an approximated energy
of the joint pdf around its minimum, we exchange the energy by a Taylor series of
the original, non approximated joint pdf, up to second order around its minimum with
respect to the optical flow field. The optical flow û maximizing the joint pdf is in fact
the entity we are searching for and also not known in advance, but as shown below, can
be estimated iteratively. Note that the joint pdf is proportional to the posterior pdf of the
optical flow field u and thus maximizing the joint pdf is equivalent to maximizing the
joint pdf with respect to the optical flow field. Integrating the resulting approximated
joint pdf p̃(u,g|α,β, û) over u results in the likelihood function of the hyper-parameters

p̃(g|α,β, û) =
∫
p̃(u,g|α,β, û)du . (8)

If prior knowledge about the hyper-parameters are available, it can be encoded into the
corresponding hyper-parameter prior pdfs p(α) and p(β). The resulting posterior pdf of
the hyper-parameters yields

p̃(α,β|g, û)∝ p̃(g|α,β, û)p(α)p(β) . (9)

The hyper-parameters are then estimated by minimizing the negative logarithm of the
posterior pdf p̃(α,β|g, û) with respect to α and β for the present realization of the gradi-
ent field g. We now compute the concrete likelihood function of the hyper-parameters.
Let Q(û,α,β) denote the Hessian of the joint energy J(u,α,β) = JL(u,α)+Jp(u,β)
and A(û,α), B(û,β) the Hessians of the likelihood and prior energy, respectively, taken
at the optical flow field for which the joint pdf attains its maximum. The optical flow
field which minimizes J(u,α,β) is in fact the MAP estimator of the optical flow field
for fixed α,β. With the notation Ĵ = J(û,α,β) and Q̂ = Q(û,α,β) the approximated
posterior energy reads

J(u,α,β)≈ Ĵ +
1

2
(u− û)T Q̂(u− û) . (10)

Inserting the approximated posterior pdf in equ.(8) and integrating over u yields the
likelihood function of the hyper-parameters

p̃(g|α,β, û) =
(2π)N

Z̃L(α)Z̃p(β)
∣∣∣Q̂∣∣∣ 1

2

exp
(
−Ĵ

)
. (11)



Since the computation of the determinant |Q(û,α,β)| is not feasible for usual image
sequence sizes, an approximation has to be performed. For computing |Q(û,α,β)|, we
neglect interactions between different pixels, i.e. the interaction matrix B(u,β) becomes
a block diagonal matrix. Then the determinant of Q(û,α,β) factorizes into the product
of determinants of Qj(û,α,β) = Aj +Bj . The approximated objective function for the
hyper-parameters then becomes

L(û,α,β)∝ Ĵ +
1

2

N∑
j=1

ln
(∣∣∣Q̂j

∣∣∣)+ln
(
Z̃LZ̃p

)
. (12)

Since û itself depends on the hyper-parameters α,β we have to apply an iterative scheme
for estimating u,α and β simultaneously

uk+1 = argmin
u

{
J(u,αk,βk)

}
(13)

αk+1 = argmin
α

{
L(uk,α,βk)

}
βk+1 = argmin

β

{
L(uk,αk,β)

}
.

Note that the first step in the iterative scheme is nothing but the usual optical flow
estimation for fixed hyper-parameters as used usually in global approaches. The second
and third term in equ.(12) which distinguishes our objective function from others,
enables the simultaneous hyper-parameter and motion estimation.

EXPERIMENTAL RESULTS

In this section, the performance of our MMAP estimator is shown. For the global motion
estimation we choose the 3D-linear-CLG estimator as described in [Bruhn et al.(2005)].
For the experiment we used three image sequences, together with their true optical
flow 1: ’Yosemite’ (without clouds), ’Diverging Tree’ and ’Office’. An averaging volume
of size 5× 5× 5 was applied with a Gaussian weighting function of width σ = 1. The
derivatives occurring in the BCCE were designed according to [Scharr(2000)] and are of
size 5×5×5. The optical flow u and the hyper-parameters α and β were simultaneously
estimated according to our iterative scheme (13). The first step was performed using the
successive over-relaxation (SOR) method with a relaxation parameter of γ = 1.97. For
the second and third step, we set the derivative of L(û,α,β) with respect to α and β
to zero and solve for the corresponding hyper-parameters to obtain a fix-point equation
which was solved iteratively. For performance evaluation, the average angular error
(AAE) [Barron et al.(1994)] was computed. Figure 1 shows one image of the ’Office’
sequence (left), the ground truth (middle) and the estimated optical flow field (right).
Figure 2 shows the computed AAE depending on the regularization parameter λ= α/β
for the three image sequences.

1 The ’Diverging Tree’ sequence has been taken from Barron’s web-site, the ’Yosemite’ se-
quence from "http://www.cs.brown.edu/people/black/images.html" and the ’Office’ sequence from
"http://www.cs.otago.ac.nz/research/vision/" .



Fig. 1: Left: one image of the ’Office’ sequence; middle: ground truth of the ’Office’ sequence,
the amplitude of the optical flow is encoded in intensity/color with additional optical flow vectors
depicted at certain positions; right: estimated optical flow using the 3D-linear-CLG estimator.
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Fig. 2: Average angular error (AAE) vs. regularization parameter λ = α/β for the image
sequences: Diverging Tree (left), Office (middle) and Yosemite (right). The solid lines denote the
3D-nonlinear-CLG estimates whereas the dash-dot lines denote the 3D-linear-CLG estimates.
The filled circles denote the corresponding MMAP estimates.

The estimated regularization parameter delivers for all image sequences and all mo-
tion estimation techniques a value that is quite close to the optimal value, i.e. the mini-
mum of the corresponding curve. A constant regularization parameter for all sequences
as well as for all motion estimation techniques would lead to erroneous results. Thus, λ
is a critical parameter which is properly estimated by our MMAP estimator.

SUMMARY AND CONCLUSION

In this contribution, we present a MMAP estimator for simultaneously estimating hyper-
parameters and optical flow directly from the observed signal without any prior knowl-
edge of the optical flow. Experiments show that our MMAP estimator delivers the op-
timal hyper-parameters and show the need for optimizing the hyper-parameters to each
image sequence for precise motion estimation. Since there are still free parameters left
in global motion estimation techniques like the filter size, our future work will focus on
deriving optimization schemes for these still free parameters. Another task will be the
incorporation of more complex prior pdfs like those proposed in [Roth and Black(2005)]
into our framework.
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