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Abstract. We consider the problem of determining the amount to bid in a certain type of auctions
in which customers submit one sealed bid. The bid reflects theprice a customer is willing to pay for
one unit of the offered goods. The auction is repeated and at each auction each customer requests
a certain amount of goods, an amount that we call the capacityof the customer and that varies
among customers and over time. At each auction, only the customer with the largest bid-capacity
product obtains any goods. The price paid by the winner equals his/her bid-capacity product, and
the amount of goods obtained in return equals the winner’s capacity. The auction is repeated many
times, with only limited information concerning winning bid-capacity products being announced
to the customers. This situation is motivated in for examplewireless communication networks in
which a possible way of obtaining a desired service level is to use dynamic pricing and competitive
bidding. In this application, the capacity is typically uncertain when the bid is made. We derive
bidding rules and loss functions for a few typical service requirements.
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1. INTRODUCTION

We here consider a bidding situation in which customers compete for a resource which
can only be used by one customer at a time. The resource carries a certain utility, the
capacity of the resource, which varies over time and is different for each competitor. For
instance, the capacity may in a mobile telecommunications network be the time-varying
data rate over the communications channel.

Each competitor submits one sealed bid. After all bids have been collected, a winner is
announced who gets access to the resource for a certain time period and thereby receives
goods according to that customer’s capacity. For the next period, a new auction is carried
out again under similar circumstances.

If the winning bid wasq and the capacity of the winning customer wasc, the winning
customer paysqc monetary units, i.e.q is the price per unit utility. The auctioneer’s
income for each auction is thusqc, and the winning customer is the one with maximum
price-capacity productqc.

Our problem set-up is the following:

• Different biddersu may have different capacitiescu

• Each bidderu reports its own capacitycu to the auctioneer along with its bidqu.
Both values are hidden for other customers.

• Although all information reported to the auctioneer is sealed, a bidder obtains some



implicit information regarding other bidders’ capacitiesand bids from how many
times the bidder wins the auction. The bidder does however not know who wins an
auction that is not won by the bidder, nor, in that case, the winning price-capacity
product.

• The auctioneer knows all bidders’ capacities and bids.

The question we seek to answer is then: What is the best bid thata customer can
make? Clearly, the answer depends on the customer’s need for capacity, and – having
established a loss function describing this – any information at hand that can assist in
reaching a decision. This type of problem was considered by Friedman [1] in 1956, and
a similar strategy as the one we will use here was suggested. Friedman considers the
objective of bidding for maximum expected profit in a scenario where a government
agency invites a large number of companies in the same industry to bid for contracts.
Friedman notes that "the difficulty in determining the expected profit lies in determining
... the probability of winning as a function of the amount bid". He suggests the use of
histograms of bids from old auctions, assuming that all previous bids are made public
after an auction. In our scenario, we do not assume knowledgeof all previous bids. In
many auctions, only the winning bids are announced and then Friedman’s method fails
to determine a probability distribution for the other customers’ bids. From our present
understanding of probability theory as logic, however, thesolution is straightforward.
As always, a probability distribution should not reflect oldfrequencies but carry all
information, and lack thereof, that we actually have concerning the unknown event.
In our specific scenario, the information we assume to be in possession of will lead
to a maximum entropy problem. In general, additional information should be processed
through Bayes’ rule.

The problem formulation has a motivation in mobile communications, where it has
been suggested that one way of obtaining different service levels is to use dynamic
pricing and competitive bidding. There, the capacity is thebit rate that a user can receive
or transmit data with. In such a network, prices would decrease when the network is
under-utilized or the user is near a base station, andvice versa. Before proceeding to the
technical derivations, let us first take a concrete example of the auctioning procedure.

Example: Two users compete for access to a wireless communications channel. In
any time slot (on the order of milliseconds), only one user may access the channel. To
maximize revenues, the base station transmits data to the user which pays the highest
total price for access. At a certain time slott, user 1 can receivec1(t) = 100 bits of data
and decides to bidq = 0.1 per bit, i.e. the total bid-capacity product is 10, whereasuser
2 has a capacityc2(t) = 80 and bidsq2(t) = 0.2 per bit, giving the bid-capacity product
16. The bids and capacities are transmitted to the base station on a separate control
channel (the bids would typically not be updated over a number of consecutive periods,
thereby alleviating the need for a high-rate feedback channel). Neither user knows the
other user’s bid or capacity. The base station receives the information from both users
and awards the next slot to user 2 who has the highest bid-capacity product. Finally, on
a regular basis the base station broadcasts some aggregate statistics of the winning bid-
capacity products, which will be described in later parts ofthe paper. The users adjust
their bids according to this information and the process is repeated.



2. A BAYESIAN STRATEGY FOR COMPETITIVE BIDDING

Our approach is to minimize the expected loss conditional onthe limited informationI
available to the customer. Let a particular customeru’s probability that he or she will
have the largest bid-capacity product of all customers be denoted byP(u | I). Then
P(u | I) is equal to the probability that the customerv with the largest bid-capacity
product of all other customers has a lower bid-capacity product than customeru. Let qv
denote the bid ofv, cv the corresponding capacity, andy = qvcv the largest bid-capacity
product among all customers exceptu. We can then find the probability thatu wins as
follows: first determine the probability thaty < cuqu assuming knowledge ofcu, i.e.
∫ cuqu

0 P(y | cuI)dy. Then multiply this with the probability distribution forcu given I to
obtain the joint probability forcu andy < cuqu. Integrating the result over all possible
capacitiescu, we have

P(u | I) =
∫

P(cu | I)
∫ cuqu

0
P(y | cuI)dydcu . (1)

In order to determine this probability distribution we mustfirst find the probability
distribution forcu and that fory. We will consider a general case in which the capacities
cu may be unknown in advance, as that is often the case in mobile communications. If
the capacity is already known the solution simplifies straightforwardly.

Assume that there areK different possible capacitiesck. We suppose further that each
customer stores the number of time slots that each capacityck could be used during
a recent time window. If nothing else than these numbers are known, the probability
that the customer’s capacity will beck is then the expected frequency with which that
capacity will be used. According to Laplace’s rule of succession, see [2], Chapter 18,
the probability for having the capacityck is

P(ck | I) =
nk +1
N +K

, (2)

wherenk is the number of time slots over the lastN records that capacityck (but not
higher) could be attained.

Now, the distributionP(y | I) of the other customers’ best price-capacity product
depends heavily on the informationI that customeru possesses. We will here assume that
the auctioneer periodically broadcasts the expected winning price-capacity product for
the coming period along with a measure of the prediction uncertainty. The simplest such
scheme would consist of recording the average of the most recent winning price-capacity
products and its variance. More advanced schemes include determining a model for the
time evolution of price-capacity products. Here, we will assume that an expectation is
available along with a variance for the prediction. These two quantities are broadcast to
all users at regular intervals.

With no other knowledge than the mean and the variance of a variable, the least biased
probability distribution according to the maximum entropyprinciple is Gaussian. Thus,
we shall take

P(y | I) =
1√

2πσy
exp

{

− 1
2σ2

y
(y−µy)

2

}

, (3)



with µy denoting the expectation ofy, andσ2
y the variance of the distribution. Here,

by not truncating the distribution at zero we have assumed that the variance of the
distribution is not too large compared to the mean, so that the tail of the distribution
below y = 0 is negligible. It should also be pointed out that we are toldthe mean and
the variance ofall winning price-capacity products, which includes those times when
customeru won. However, we should actually determine a distribution for the winning
price-capacity products of all customersexcept u. Below, we discuss how to adjust the
mean and the variance to subtract out the contributions fromcustomeru. It is however
not clear in general that this distribution, having excluded one of the components, should
also be Gaussian. We have good reason to use a Gaussian distribution if there are many
bidders with independently and symmetrically varying price-capacity products around
some mean. Now, the bids are not logically independent sinceall customers base their
decisions on partly the same information. On the other hand,the capacity variations
will often, for instance in the mobile communications scenario described above, be
independent among customers, which to some extent will havea "randomizing" effect
on the price-capacity products. Nonetheless, we may argue that a correlated distribution
might be a better model. We will leave this alternative as a topic for future research, and
here continue to work with the Gaussian model.

Inserting (2) and (3) into (1) (replacing the integral overcu with a sum, reflecting that
cu is discrete) we obtain

P(u | I) =
K

∑
k=1

nk +1
N +K

∫ quck

−∞

1√
2πσy

exp

{

−(y−µy)
2

2σ2
y

}

dy

=
K

∑
k=1

nk +1
N +K

× 1
2

erfc

(

µy −quck√
2σy

)

(4)

where erfc(x) = 1− 2√
π
∫ x

0 exp(−t2)dt is the complementary error function.

2.1. Typical loss functions

Different customers may have different service demands. Wehere propose a number
of loss functions that are intended to reflect typical requirements. The loss functions
would moreover often be supplemented by a constraint on the maximum allowed bid.

2.1.1. Constant demand

A customeru wishing to obtain a certain amountφu of goods over the comingN time
slots should use

L(qu,xu(qu)) = |xu(qu)−φu| , (5)

wherexu(qu) is the actual amount of goods that the user will obtain forqu monetary
units.



2.1.2. Price-performance ratio

A customeru may wish to increase his bid if that bid would result in a significantly
increased amount of delivered goods. In some sense, the price-performance ratio should
be optimized. A possible formalization is the following: A price increase of 1 unit is
acceptable given that the amount of goods obtained then increases by at least a factora.
Then the following loss function should be used.

L(qu,xu(qu)) =
aqu

max(xu(qu),b)
, (6)

wherexu(qu) is the actual amount of goods that the customer will obtain for qu monetary
units. If xu(qu) > b then an increased bid,qu → qu +1 will result in a lower loss if and
only if xu(qu +1) > axu(qu), because then we obtain

L(qu +1,xu(qu +1)) =
aqu+1

xu(qu +1)
<

aqn

xu(qu)
= L(qu,xu(qu)) . (7)

The formulation (6) also includes a minimum acceptable delivery size; if the user is to
pay more than 0 monetary units per bit then the throughput must satisfyxu(qu)/aqu > b.

For example, if the customer requires at least an amount of 50units per time slot, and
if a price raise of 1 unit is acceptable only if the obtained goods then double, the loss
function is 2qu/max(xu(qu),50).

2.2. Making the decision – expectations and computations

The expected throughput〈xu(qu)〉 per time slot as a function of the bidqu is

〈xu(qu)〉 =
K

∑
k=1

ck ×
nk +1
N +K

× 1
2

erfc

(

µy −quck√
2σy

)

. (8)

Similarly, the expected loss using the loss function (5) is

〈L(qu)〉 =
K

∑
k=1

|ck −φu|×
nk +1
N +K

× 1
2

erfc

(

µy −quck√
2σy

)

. (9)

The expected loss using (6) involves determining the expectation of 1/xu for the
Gaussian-distributed uncertainty ofxu, an expectation which is not available in closed
form. We shall instead use the expected value ofxu directly in (6), thus obtaining a
suboptimal solution that does not fully account for our actual uncertainty in making the
bid. The estimated losŝL(qu) is then

L̂(qu) =
aqu

max(〈xu(qu)〉,b)
, (10)



where〈xu(qu)〉 is defined in (8).
Recall thaty is the winning price-capacity product of all customersexcept customer

u. In calculating the best bid, a customer must therefore adjust the variance and the
mean of the distribution for the best price-capacity product since these quantities are
broadcast and based on all customers. These adjustments arequite difficult to carry out
for a customer who has been awarded all or almost all resources over the last period.
Usually, however, we would expect that there are many different customers who obtain
at least some goods, and then the following adjustments may be used.

The averageµy is estimated from the broadcast valueµw (the average of the winning
bids) by

µy =
lµw −qu(t −1)xu(t −1)

l − lu
(11)

wherel is the number of time slots between consecutive price updates, lu is the number
of time slots that customeru won, andqu(t − 1)xu(t − 1) is the sum of customeru’s
price-capacity products for thelu time slots that were won by customeru in the previous
period ofl slots.

Similarly, the variance is estimated by

σ2
y =

lσ2
w − luσ2

u (t −1)

l − lu
(12)

whereσ2
u is the sample variance for the price-capacity product of customer u in the slots

that this customer won.
In order to compute the minimum of either of the two expected loss expressions (9)

and (10) a numerical one-dimensional search is carried out using e.g. the Nelder-Mead
simplex algorithm [3].

3. EXAMPLES

We now consider the performance of the scheme outlined in this paper based on simu-
lations of the mobile communications scenario mentioned inthe Introduction. Assume
one transmitting base station andU = 4 competing users. With a periodicity ofn = 20
time slots, i.e. every 20th auction, each mobile user updates its bid and submits it to
the base station. An upper limit on the bid,qu ≤ 5, is also assumed. There areK = 4
different transmission rates, i.e. capacities, and each user determines and tells the base
station the capacity that can be used in the next time slot based on channel measure-
ments. The base station then transmits exclusively in each time slot to the user with the
highest price-capacity product. There are four different capacities (bits per time slot),

c1 = 0 c2 = 74 c3 = 92 c4 = 106. (13)

In the simulation, the actual capacities for each user in each time slot are drawn from
a random number generator, with equal but independent statistics (quantized Gaussian
with mean 80 and standard deviation 20) for each user. For more details on how to
determine proper capacity levels in a network, please see Chapter 6 of [4]. The capacity
probabilities (2) are updated continuously as more data becomes available.
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FIGURE FIGURE 1. (a) The evolution of the bids for the four users with desired rates 15, 20, 20 and
30 respectively. (b) The obtained throughput per time slot for the four users. (c) The evolution of the bids
for the four users with desired rates 15, 20, 25 and 30 respectively. (d) The obtained throughput per time
slot for the four users.

We first consider a case where all four users have a desired rate per time slot according
to

φ1 = 15 φ2 = 20 φ3 = 20 φ4 = 30 (14)

and attempt to minimize (9). Figures 1 (a) and (b) show the resulting bids and obtained
throughput per time slot from this test in a simulation lasting for 600 repeated auctions
(i.e. 30 price-update intervals). The plotted results are averages from 25 simulations.
The average obtained rates over the entire simulated periodwere found to be close to
the desired rates:

x̄1 = 14 x̄2 = 21 x̄3 = 21 x̄4 = 33. (15)

Under otherwise similar circumstances, Figures 1 (c) and (d) show the bids and the
obtained capacities when the desired rate of user 3 was increased to 25 bits per time
slot, yielding a more competitive setting. Here, we see thatthe prices tend to increase
because the users have trouble obtaining the desired quality of service. The average
obtained capacity per time slot over the entire simulated period now becomes

x̄1 = 13 x̄2 = 19 x̄3 = 26 x̄4 = 31. (16)

In a similar setting as the previous one, we now let user 1 minimize the approximate
expectation (10) of the price-performance-related loss with a = 2 andb = 8. Recall that
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FIGURE FIGURE 2. (a) The evolution of the bids for the four users with user 1 minimizing the price-
performance-related estimated loss (10) and the other users employing (9) with desired rates 10, 20 and
20 respectively. (b) The obtained throughput per time slot for the four users. (c) The evolution of the
price-to-performance ratio (the bid divided by the obtained throughput) for the four users.

use of this loss means that a 1-unit price increase is acceptable only if it leads to more
than a doubling of the obtained throughput. Only if the throughput becomes more than
2qu ×8 bits is a non-zero bidqu preferable. Users 2−4 continue to minimize the expected
loss (9) for a desired rate per time slot of

φ2 = 10 φ3 = 20 φ4 = 20. (17)

In Figures 2 (a), (b), and (c), the bids, obtained throughputand the price-to-obtained-
throughput ratio (PTR)qu/xu are plotted as a function of time. The results are averages
from running a simulation consisting of 1800 auctions 25 times. The average obtained
throughput per auction in this case becomes

x̄1 = 34 x̄2 = 11 x̄3 = 21 x̄4 = 21, (18)

where we see that users 2−4 obtain rates corresponding well to their preferences. From
Figure 2 (c) we see that user 1 achieves the lowest PTR while the user with the lowest
rate requirement has the worst PTR.

All in all, the performance examples show that the bidding strategies seem to function
well, but it should be noted that a full analysis of the behavior of the bidding policies is
extremely complex and has not been carried out here. The individual bidder, in trying
to make a reasonable bid in terms of his/her loss function, bases his/her decision on
information which is different for different customers (because the estimates of the other
users’ best price-capacity products become different for different users depending on the
number of wins for that customer). Therefore, the behavior becomes very complex and
hard to predict. We need to find better theoretical means for such a deeper analysis.
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