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Abstract. Main aim of this paper is to derive the exact analytical expressions of entropy for Pareto,
Burr and related distributions. Entropy forith order statistics of these distributions corresponding
to the random sample size n is introduced. These distributions arise as tractable parametric models
in reliability, actuarial science, economics, finance and telecommunications. We showed that all the
calculations can be obtained from one main dimensional integral, its expression is obtained through
some particular change of variable. Indeed, we consider that this technique for that improper
integral has its own importance.
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INTRODUCTION

The development of the idea of entropy of random variables by Claud Shannon [1].
Provided the beginning of information theory. The applications of entropy originated
in the nineteenth century in the field of Statistical Mechanics and Thermodynamics.
During the last fifty years or so, a number of research paper and monographs discussing
and extending Shannon’s original work have appeared. In this paper the exact form of
entropy for pareto (IV) and related distributions is determined. Entropy forith order
statistics corresponding to the random size n from these distributions is introduced. The
entropy of a random variable X taking its values in R with probability density function
fX(x), is defined by

HX =−
∫

R
f(x) lnf(x)dx.

Provided that the integral exists. Analytical expression for the entropy of univariate
continuous distributions are discussed by Cover and Thomas [3], Verdugo Lazo and
Rathie [4]. The entropy expression for pareto (IV) distribution are given in section 2,
entropy forith order statistics of this distribution are given in section 3, and entropy
expressions for Pareto type (III), (II), (I) andith order statistics of these distributions
corresponding to the random samples from are give in section 4. The entropy expression
with respect to its order statistics are given in section 5.



PARETO(IV) DISTRIBUTION

Pareto type (IV) distribution as discussed in Arnold [2] chapter 3, a hierarchy Pareto
distribution is established by starting with the classical Pareto (I) distribution and subse-
quently introducing additional parameters related to location, scale, shape and inequality
(Gini index). Such an approach leads to a very general family of distributions, called the
Pareto (IV) family, with the cumulative distribution function

FX(x) = 1−
(

1+
(

x−µ

θ

) 1
γ

)−α

, x > µ, (1)

where−∞ < µ < +∞ is the location parameter,θ > 0 is the scale parameter,γ > 0
is the inequality parameter andα > 0 is the shape parameter which characterizes the tail
of the distribution. We denote this distribution by Pareto (IV)(µ,θ,γ,α). Parameterγ is
called the inequality parameter because of its interpretation in the economics context.
That is, if we chooseα = 1 and µ = 0 in expression (1), the parameter(γ ≤ 1) is
precisely the Gini index of inequality. For the Pareto (IV)(µ,θ,γ,α) distribution, we
have the density function

fX(x) =
α
(

x−µ
θ

) 1
γ
−1

θγ
(
1+

(
x−µ

θ

) 1
γ

)α+1 , x > µ. (2)

The log-density is:

lnfX(x) = ln

(
α

θγ

)
+

(
1

γ
−1

)
ln
(

x−µ

θ

)
− (α+1)ln

[
1+(

x−µ

θ
)

1
γ

]
,

and the entropy is:

HX =
∫

x
f(x) lnf(x)dx =− ln

(
α

θγ

)
(3)

+

(
1− 1

γ

)
E
[
ln
(

X−µ

θ

)]
+(α+1)E

ln
1+

(
X−µ

θ

) 1
γ

 .

We need to find the expressionsE
[
ln
(

X−µ
θ

)]
andE

[
ln
(
1+

(
X−µ

θ

) 1
γ

)]
.

First we calculate the expectation of

E

[(
X−µ

θ

)r
]

=
∫

x

(
x−µ

θ

)r

f(x)dx,

By using the change of variable:

1+
(

X−µ

θ

) 1
γ

=
1

1− t
0 < t < 1,



we obtained:

E

[(
X−µ

θ

)r
]

= α
Γ(rγ +1)Γ(α− rγ)

Γ(α+1)
, (4)

α− rγ 6= 0,−1,−2, · · · .

Differentiating both sides of (4) with respect to r we obtain:

d

dr
E

[(
X−µ

θ

)r
]

= E

[(
X−µ

θ

)r

ln
(

X−µ

θ

)]
= (5)

1

Γα
[γΓ′(rγ +1)Γ(α− rγ)−γΓ′(α− rγ)Γ(rγ +1)] .

Using relation (5), atr = 0 we obtain

E
[
ln
(

X−µ

θ

)]
= γ [Ψ(1)−Ψ(α)] , (6)

whereΨ is the digamma function defined byΨ(z) = d
dz

lnΓ(z) whereΓ is the gamma
function.
Taking derivative with respect toα, from the both sides of the relation

1 =
∫ +∞

µ
f(x)dx, (7)

leads to

E

ln
1+

(
X−µ

θ

) 1
γ

=
1

α
. (8)

Substitute (6) and(8) in relation (3) we have:

HX = ln

(
γθ

α

)
+(γ−1) [Ψ(1)−Ψ(α)]+

α+1

α
. (9)

ENTROPY FOR ORDER STATISTICS

Let X1,X2, · · · ,Xn be a random sample of the probability density function (2). Let
Y1 ≤ Y2 ≤ ·· · ≤ Yn−1 ≤ Yn denote the corresponding order statistics; then

gi,n(y) = n

(
n−1

i−1

)
[Fi,n(y)]i−1 [1−Fi,n(Y )]n−i fX(y)

=
nα

θγ

(
n−1

i−1

)(
y−µ

θ

) 1
γ
−1
(

1+
(

y−µ

θ

) 1
γ

)−α(n−i+1)−1

1−(1+
(

y−µ

θ

) 1
γ

)−α
i−1

,y > µ. (10)



The entropy expression of thegi,n(y) is:

Hi,n(Y ) = − ln

[
nα

θγ

(
n−1

i−1

)]
+

(
1− 1

γ

)
E
[
ln
(

Y −µ

θ

)]

+[α(n− i+1)+1]E

ln(1+
Y −µ

θ

) 1
γ

+

(1− i)E

ln
1−

(
1+

Y −µ

θ

) 1
γ

−α . (11)

We need to calculate the expressions of:

E
[
ln
(

Y −µ

θ

)]
, E

ln(1+
Y −µ

θ

) 1
γ


and

E

ln
1−

(
1+

Y −µ

θ

) 1
γ

−α .

Derivation of these expressions are based on the following strategy: first, we derive an
analytical expression for the following expressions.

E

[(
Y −µ

θ

)r
]
, E

(1+
Y −µ

θ

) 1
γ

r

, E

1−
(
1+

Y −µ

θ

) 1
γ

−αr

.

Now:

E

[(
Y −µ

θ

)r
]

=
∫ ∞

µ
(
y−µ

θ
)rgi,n(y)dy =

nα

θγ

(
n−1

i−1

)∫ ∞

µ

(
y−µ

θ

) 1
γ
+r−1

(
1+

(
y−µ

θ

) 1
γ

)−α(n−i+1)−1

1−(1+
(

y−µ

θ

) 1
γ

)−α
i−1

dy. (12)

By change of variable1+
(

y−µ
θ

) 1
γ = t, 0 < t < 1,

we have:

E

[(
Y −µ

θ

)r
]

= nα

(
n−1

i−1

)
i−1∑
l=0

(−1)l

(
i− l

l

)
Γ(rγ +1)Γ(−rγ +α(n− i+1+ l))

Γ(1+α(n− i+1+ l))
. (13)



Differentiating both sides of (13) with respect to r and then atr = 0 we obtain:

E
[
ln
(

Y −µ

θ

)]
= nαγ

(
n−1

i−1

)
(14)

i−1∑
l=0

(−1)l

(
i−1

l

)[
Ψ(1)−Ψ(α(n− i+1+ l))

α(n− i+1+ l)

]
.

If denote:

φ(r) = E

1+
(

Y −µ

θ

) 1
γ

r=
nα

θγ

(
n−1

i−1

)∫ ∞

µ

(
y−µ

θ

) 1
γ
−1

(15)

(1+
(

y−µ

θ

) 1
γ

)r−α(n−i+1)−1
1−(1+

(
y−µ

θ

) 1
γ

)−α
i−1

dy.

Using the change of variable:(
1+

(
y−µ

θ

) 1
γ

)−α

= t, 0 < t < 1,

we have:

φ(r) = n

(
n−1

i−1

)∫ 1

0
tn−i− r

γ (1− t)i−1dt

=
Γ(n+1)Γ

(
n− i− r

α
+1

)
Γ(n− i+1)Γ

(
n− r

α
+1

) . (16)

dφ(r)

dr
‖r=0 = E

ln
1+

(
Y −µ

θ

) 1
γ


=

Ψ(n+1)−Ψ(n− i+1)

α
. (17)

It can be shown that:

k(r) = E

ln
1−

(
1+

Y −µ

θ

) 1
γ

−αr

=
Γ(n+1)Γ(r + i)

Γ(i)Γ(r +n+1)
, (18)

and
dk(r)

dr
‖r=0 = E

ln
1−

(
1+

Y −µ

θ

) 1
γ

−α= Ψ(i)−Ψ(n+1). (19)



Substitute (14) , (17) and (19) in relation (11) we have:

Hi,n(Y ) = − ln

[
nα

θγ

(
n−1

i−1

)]
+(γ−1)n

(
n−1

i−1

)
i−1∑
l=0

(−1)l

(
i−1

l

)[
Ψ(1)−Ψ(α(n− i+1+ l))

n− i+1+ l
+[α(n− i+1)+1]

]
[
Ψ(n+1)−Ψ(n− i+1)

α

]
+(i−1) [Ψ(n+1)−Ψ(i)] . (20)

In particular case if:
1) i = n = 1 =⇒H1,1(Y ) = HX

2) i = n =⇒ we obtain the useful result as:

Hn,n(Y ) = − ln

(
nα

θγ

)
+n(γ−1)

n−1∑
l=0

(−1)l

(
n−1

l

)
[
Ψ(1)−Ψ(α(1+ l))

1+ l

]
+
(

n−1

n

)
+
(

α+1

α

)
[Ψ(n+1)−Ψ(1)] .

3) i = 1 =⇒

H1,n(Y ) =− ln

[
nα

θγ

]
+(γ−1) [Ψ(1)−Ψ(nα)] = HX(nα).

4) The entropy expression for median where n be odd is:

n = 2m+1, i = m+1 =⇒

Hm+1,n(Y ) = − ln

[
nα

θγ

(
n−1

m

)]
+(γ−1)n

(
n−1

m

)
m∑

l=0

(−1)l

(
m

l

)[
Ψ(1)−Ψ(α(n−m+ l))

n−m+ l

]
+(

α(n−m)+1

α

)
[Ψ(n+1)−Ψ(n−m)]+

m [Ψ(n+1)−Ψ(m+1)] .

PARETO (III) DISTRIBUTION

By settingα = 1 in relation (1) we obtain the Pareto cumulative distribution of type (III),
and the probability density function of Pareto type (III) is obtained by settingα = 1 in
relation (2) which follows respectively as:

FX(x) = 1−
(

1+
(

x−µ

θ

) 1
γ

)−1

, x > µ,



fX(x) =
1

γθ

(
x−µ

θ

) 1
γ
−1
(

1−
(

x−µ

θ

) 1
γ

)−2

, x > µ.

The probability density function of theith order statistics of pareto type (III) distribution
corresponding to the random sample size of n from is:

gi,n(y) =
n

γθ

(
n−1

i−1

)(
y−µ

θ

) 1
γ
−1
(

1+
(

y−µ

θ

) 1
γ

)−(n−i+2)

1−(1+
(

y−µ

θ

) 1
γ

)−1
i−1

, y > µ,

and its entropy expression is:

Hi,n(Y ) = − ln

[
n

γθ

(
n−1

i−1

)]
+(γ−1)n

(
n−1

i−1

)
i−1∑
l=0

(−1)l

(
i−1

l

)[
Ψ(1)−Ψ(n− i+ l+1)

n− i+ l+1

]
+

(n− i+2)[Ψ(n+1)−Ψ(n− i+1)]+(i−1) [Ψ(n+1)−Ψ(i)] .

In particular case if:
1) i = n = 1 =⇒H1,1(Y ) = HX = ln(γθ)+2= H(Pareto(III))
2) i = 1 =⇒ we obtain the useful result as:

H1,1(Y ) =− ln

(
n

γθ

)
+(γ−1) [Ψ(1)−Ψ(n)] = HX(α = n).

3) i = n =⇒

Hn,n(Y ) = − ln

(
n

γθ

)
+n(γ−1)

n−1∑
l=0

(−1)l

(
n−1

l

)
[
Ψ(1)−Ψ(l+1)

l+1

]
+2[Ψ(n+1)−Ψ(1)]+

(
n−1

n

)
.

PARETO (II) AND (I) DISTRIBUTIONS

The best known Pareto distributions are type (II) and (I). A Pareto distribution of type
(II) is obtained by settingγ = 1 in relation (1).
The entropy of this distribution is:

HX = ln(
θ

α
)+

α+1

α
.

The corresponding entropy expression for theith order statistics of this distribution
corresponding is obtained by settingγ = 1 in relation (20):



Hi,n(Y ) = − ln
[
nα

θ

]
+[α(n− i+1)+1][

Ψ(n+1)−Ψ(n− i+1)

α

]
+(i−1) [Ψ(n+1)−Ψ(i)] .

In particular case if:
1)

i = n = 1 =⇒H1,1(Y ) =− ln
(

α

θ

)
+

α+1

α
= HX .

2) i = n =⇒ we obtain the useful result as:

Hn,n = − ln
(

nα

θ

)
+

[
Ψ(1)−Ψ(α(1+ l))

1+ l

]
+(

n−1

n

)
+
(

α+1

α

)
[Ψ(n+1)−Ψ(1)] .

3) i = 1 =⇒H1,n(Y ) = ln
(

θ
nα

)
+ nα+1

nα
= HX(nα).

If one setsγ = 1 and µ = θ in relation (1) then one gets a Pareto distribution of
type (I).
Since the entropy expression of Pareto family is not depends on location parameterµ,
thus, one finds that the entropy
HX(Pareto(II))= HX(Pareto(I)),
and
Hi,n(Pareto(II))= Hi,n(Pareto (I)).

BURR (XII) DISTRIBUTION

This distribution is a special case of Pareto (IV) withµ = 0 , γ −→ 1
γ
,

thus; by settingµ = 0 and replacingγ by 1
γ

in relations (1) and (2), the cumulative
distribution and probability density function of Burr type (XII) distribution is dervived:

FX(x) = 1−
(
1+

(
x

θ

)γ)−α

, x > 0, α,γ > 0,

fX(x) =
(

αγ

θ

)(
x

θ

)γ−1(
1+

(
x

θ

)γ)−(α+1)

, x > 0, α,γ > 0.

By replacingγ by 1
γ

in relation (9) the entropy expression of Burr type (XII) distribution
is derived:

HX = ln

(
θ

αγ

)
+(γ−1)

[
Ψ(α)−Ψ(1)

γ

]
+(

α+1

α
).



The entropy expression of theith order statistics corresponding to the sample size of n
of this distribution, by replacingγ by 1

γ
in relation (20) is derived as:

Hi,n(Y ) = − ln

[
αγ

θ
n

(
n−1

i−1

)]
+(γ−1)n

(
n−1

i−1

)
i−1∑
l=0

(−1)l

(
i−1

l

)
[
Ψ(1)−Ψ(α(n− i+1+ l))

γ(n− i+1+ l)

]
+[α(n− i+1)+1][

Ψ(n+1)−Ψ(n− i+1)

α

]
+(i−1) [Ψ(n+1)−Ψ(i)] .

In particular case if:
1) i = 1 =⇒

H1,n =− ln
(

nαγ

θ

)
+

(
γ−1

γ

)[
Ψ(1)−Ψ(nα)

n

]
+

nα+1

nα
= HX(nα).

2) i = n =⇒ we obtain the useful result as:

Hn,n(Y ) = − ln
(

nαγ

θ

)
+(γ−1)n

n−1∑
l=0

(−1)l

(
n−1

l

)
[
Ψ(1)−Ψ(α(1+ l))

γ(1+ l)

]
+
(

α+1

α

)
[Ψ(n+1)−Ψ(1)]+

(
n−1

n

)
.

3) i = n = 1 =⇒H1,1(Y ) =− ln
(

αγ
θ

)
+
(

γ−1
γ

)
[Ψ(1)−Ψ(α)] .

CONCLUSION

In this paper we obtained the exact form of entropy expression for Pareto (IV) and re-
lated distributions. Entropy forith order statistics of these distributions corresponding to
the random samples size n has been derived.
Deriving entropy expression for remainder Burr family distributions andith order statis-
tics of these distributions corresponding to the random samples size n are my further
works.
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