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Abstract. The evolution of a quantum system, appropriate to describe nano-magnets, can be
mapped on a Markov process, continuous inβ . The mapping implies a probability assignment that
can be used to study the probability density (PDF) of the magnetization. This procedure is not the
common way to assign probabilities, usually an assignment that is compatible with the von Neu-
mann entropy is made. Making these two assignments for the same system and comparing both
PDFs, we see that they differ numerically. In other words theassignments lead to different PDFs for
the same observable within the same model for the dynamics ofthe system. Using the maximum
entropy principle we show that the assignment resulting from the mapping on the Markov process
makes less assumptions than the other one.

Using a stochastic queue model that can be mapped on a quantumstatistical model, we control
both assignments on compatibility with the Gibbs procedurefor systems in thermal equilibrium
and argue that the assignment resulting from the mapping on the Markov process satisfies the
compatibility requirements.
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INTRODUCTION

The statistical approach of a classical system relies on probability theory through the
lack of knowledge on the initial conditions, leading to a well known probability as-
signment within the Boltzmann-Gibbs framework. In a quantum system the evolution is
inherently stochastic and the knowledge on the initial condition of the system is also in-
complete. Dealing with the statistical properties of a quantum system the question arises:
where is the uncertainty in the formulation coming from? Does the generalization of the
classical approach not give too much importance to the lack of knowledge on the initial
conditions and do we incorporate correctly the propagationof uncertainty inherent to
quantum theory?

It is clear that we will not answer to these questions in general. We will only give a
few examples that illustrate the key-role played by the probability assignments. We start
with a probability assignment that is not very well known. For quantum models with a
finite number or a countable number of states a mapping of the model and its evolution
expressed by the parameterβ into a Markov chain with a continuous time dependence
can be made. The mapping accomplishes the probability assignment: from the transition
probabilities obtained by solving the Markov chain, the PDFof an observable atβ can be



obtained given the initial PDF for the same observable usingthe Chapman-Kolmogorov
equation. We will also consider the probability assignmentthat is compatible with the
von Neumann entropy by taking the expectation value of an indicator for a specific state
of the observable. For example assume that the observableM can take the valuek and
consider the indicatorI (M = k). The PDF for a discrete observableM is given by
〈I (M = k)〉, with 〈A〉 = TrAexp(−β (H −F)) andF, the free energy of the model.

Once the probability assignments are made the Shannon entropy for both assignments
can be calculated for the same system and compared. In the case of the mapping on
the Markov chain the formalism allows a distinction betweenthe uncertainty coming
from the initial condition and the quantum evolution. In thecommon quantum statistical
procedure such a separation of sources of uncertainty is less obvious. It should be noted
that in both cases the Shannon entropy is calculated.

The paper is organized as follows, in the next section we givea short review of the
main points in the mapping that lead to a Markovian representation of the quantum evo-
lution of the systems. We sketch how it is done for the magnetic cluster and show that the
stochastic evolution of an M/M/∞-queue and the quantum evolution of a displaced har-
monic oscillator can be regarded as representations of the same probabilistic system. In
the following section we compare the Shannon entropy calculated using the probability
assignment based on the expectation value of an indicator and compare this entropy with
the Shannon entropy obtained by the Chapman-Kolmogorov equation for the Markovian
representation of the system. In the last section a discussion on the mapping is given and
some remarks on the relation between the blocking temperature of the magnetic system
and the behavior of the entropy in terms ofβ are given.

THE METHODOLOGY

In this section we indicate how a mapping on a Markov process helps us to calculate
the PDF of a set of states| k〉, the eigenstates of an observable, order parameter etc,
that undergo an evolution generated by an Hamiltonian. The cyclic property of the trace
allows you to write the partition function in any complete set of states, taking the states
| k〉 the following expression is the expectation value of the indicatorI (M = k)

p(k | β ) =
〈k | exp(−βH) | k〉

Z(β )
, (1)

and is a probability assignment. The Shannon entropy calculated using (1) is sometimes
called the information entropy [1, 2]. In ref. [3], we compared the PDF of magnetiza-
tion based on the assignment (1) with the PDF based on the Markov representation and
we found that they are different. In order to indicate the possible origin of this differ-
ence we briefly indicate the steps necessary to achieve the Markov representation. The
equivalence in evolution between the quantum system and Markov process depends on a
mapping of the evolution equations for the states| k〉 on a backward Kolmogorov equa-
tion. This allows to use the forward Kolmogorov equation to calculate the transition
probabilities for evolution between the states. These transition probabilities denoted by
p(kβ | k′0) express the probability to observe the system in state| k〉 givenβ when one



knows it is in state| k′〉 initially. For any density of the initial states the final PDFcan be
obtained by conditioning:

p(k | β ) = ∑
k′

p(kβ | k′0)p(k′ | 0). (2)

Our objective is to calculate the probability density of a complete orthonormal set of
states|k〉 given some parameterβ . In order to relate this probabilities for different values
of the parameter we would like to know the conditional probability p(kβ | k′β ′) where
β > β ′. Let us emphasize that the conditional probability is a logical relation between
the two states not a causal one. This allows to exchange the states and corresponding
parameters using Bayes rule and obtain a description valid for β ′ > β .

We define the following propagator ofH, the Hamiltonian that generates the quantum
evolution:

Kl k (β ) =
gk

gl
〈k|exp(−βH) |l〉 , (3)

the states|k〉 are the eigenstates of the operatorM not commuting withH. The partition
functionZ(β ) needed to evaluate (1) can also be calculated from the diagonal elements
of (3). The propagator (3) satisfies the following initial condition: limβ↓0Kl k (β ) = δl k.
Using H |l〉 = ∑

k6=l
|k〉〈k|H |l〉+ |l〉〈l |H |l〉, the equation of motion of the propagator

readily obtained:

∂β Kl k (β ) = ∑
p6=l

ql pKpk(β )−vl Kl k (β )−Vl Kl k (β ) . (4)

The following expressions have been introduced:ql p given by−〈p|H |l〉 gp
gl

andvl =

∑
p6=l

ql p while Vl is given by〈l | H | l〉−vl . If the parametersql p are positive they can be

considered as rates of a continuous time Markov chain, provided thatVl is identically
zero. In that case (4) is a backward Kolmogorov equation of a Markov chain [4]. If
Vl is different from 0 and positive, then the introduction of anadditional state| c〉 can
make (4) Markovian. This state is called the coffin state, it is a state characterized by
absorption and has the following properties by definition:

Kcl (β ) = 0, Kcc(β ) = 1, ∑
k6=c

Kl k (β )+Kl c (β ) = 1. (5)

Of course we have to check whether the conservation of probability in the presence of
absorbing states (5) can be satisfied for all values ofβ . The proof goes as follows: firstly
we introduce the ground state〈φ |, secondly we shift the origin of spectrum ofH to 0
and then we expand the ground state into the complete set〈k |: 〈φ |= ∑k gk〈k |. From the
conservation of probability follows:gl ∝ 〈φ | l〉, and the proportionality factor has to be
determined by the normalization.

The positivity of the rates in the Markov process turns out tobe the most demanding
criterion for the existence of the mapping. We do not know thenecessary conditions,
but it is easy to show that the conditions imposed by the Rokhsar-Kivelson mapping are
sufficient [5, 6].



The first quantum model that we will study in a Markov representation is used to
analyze the spectrum of some nano-magnets. It is a finite state system described by the
following Hamiltonian:

H = D(Sz)2+E((Sx)2− (Sy)2)+gµB(bzS
z+bxS

x). (6)

This model belongs to the class of mean-field models and bearssome resemblance with
the Lipkin-Meshkov-Glick-model [7]. When the Hamiltonianis rewritten in terms of
spin lowering and raising operators, the generatorQ for the continuous time Markov
process can be calculated using the techniques which are documented in ref. [3]. Cast-
ing the Markov representation of ( 6) into a matrix equation:∂β K̃(β ) = Q̃K̃(β ), and
straightforward matrix methods can be used to obtainKmm′(β ). In the spectral represen-
tation the propagator is given by:

Kmm′(β ) = ∑
ν

Umν exp(−βεν)U−1
ν m′ (7)

whereεν is theν-th eigenvalue of the generatorQ̃ andUl ν is an element of the modal
matrix. The mapping and references to the physical origin ofthe model can be found in
the paper: [3].

The second system is an M/M/∞ - queue. In the literature the symbolX/Y/n/K/m/Z
denotes a random service process in which customers join a queue if all servers are busy,
with inter-arrival time distributionX, service time distributionY, number of serversn,
maximum number of customers allowed in the queueK, number of customers in the
sourcem, servicing ruleZ [4]. The backward Kolmogorov equation for this system,
considering an evolution parametrised byβ is given by:

∂β K(n,β ;n′,0) = γK(n+1,β ;n′,0)+λnK(n−1,β ;n′,0)−(γ +λn)K(n,β ;n′,0). (8)

The parameterγ is related to the rate that incoming costumers join the queue, while λ is
the rate to get a service for a customer that is in the queue andas a consequence leaves
the queue. Using the techniques explained in the preceding section it is straightforward
to show that the equation (8) is a mapping of a quantum system with the following
“Hamiltonian" :

H = λA†A− γA−λA†+ γ, (9)

where the operatorsA† , A are respectively raising and lowering operators. In the case
that both rates take the same value, the quantum system turnsout to be a displaced oscil-
lator. The methods to solve equation (8) are algebraically equivalent to the methods used
to introduce coherent states [8]. Firstly a probability generating function is defined in the
complex plane:Σn(z,β ) = ∑k K(n,β ;k,0)zk, secondly the partial differential equation
for the generating function is derived, and solved using themethod of characteristics.

Making use of an expansion in series the transition probabilities are obtained in terms
of g(β ) = 1−exp(−λ (β )) by:

K(n,β ;m,0) = exp
(

−
γ
λ

g(β )
)

min(m,n)

∑
k

(

n
k

)

( γ
λ )m−k

(m−k)!
(1−g(β ))k(g(β ))n+m−2k . (10)



Once the transition probabilities are known the propagation of the lack of knowledge on
the initial conditions of the quantum system can be studied taking the stochastic nature
of that evolution fully into account.

RESULTS AND DISCUSSION

We compare the Shannon entropy calculated on the basis of thetwo probability assign-
ments introduced in the preceding section for the spin modeland the M/M/∞ – queue.

S(β ) = −∑
m

p(m | β ) ln p(m | β ) (11)

We will indicate the quantities derived using the probability assignment based on the
mapping into a Markov chain by an indexmcwhile those based on the expectation value
of the indicator have an indexie. For he spin model we will consider two cases, firstly
we consider a system consisting of a single large spin, typically used in connection with
nano-magnets, and indicated byLS. Secondly we will consider the many spin system,
typically used to calculate the blocking temperature [3] orother phase-transitions [9, 10,
11, 12], and indicated byMS.

For theM/M/∞-queue we will use the maximum entropy principle to show thatit
is able to distinguish between different initial conditions. Furthermore we will calculate
the Shannon entropy of the queue and of the "quantum“ model equivalent to the queue
and show that the entropies have completely different behavior with respect toβ . In
other words the predictions based on one of the assignments contradicts the predictions
based on the other.

At the end of the section we will draw some conclusions by answering the question:
what probability assignment is compatible with the probability assignment for a quan-
tum system in thermal equilibrium [13], the so-called Gibbsassumption?

The spin model

The single spin model describes the thermal evolution of a large spin withN + 1
states. We assume that we have no prior knowledge about the preparation and chose
a uniform densitypLS(m | 0) = 1

N+1 as an initial condition. In this case equation (2
) is readily solved and after normalization the entropy can be obtained by evaluating:
pLSmc(m | β ) ∝ ∑k K(m,β ;k). Also the information entropy can be obtained using
expression (11) by replacing the expressionp(m | β ) by:pLSie(m | β ) ∝ K(m,β ;m).

In figure (1) we show the result for both probability assignments. From the compari-
son it is clear that the maximum entropy principle favors theprobability assignment that
incorporates the uncertainty about the initial condition and the stochastic evolution.

We will compare now the entropy resulting from the two probability-assignments
that we have used in the single spin model for a system that consists out ofN spin 1

2
sites. The spins can flip up and down according to the stochastic model generated by
the same Hamiltonian. This model has the same spectrum as thesingle spin system but
the density of states is different. The multiplicity of a state with quantum numberm
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FIGURE 1. The entropy of the spin systems. (A): The thermal evolution of the entropy for two
probability assignments: the curve marked by black squaresincorporates the stochastic temporal evolution
as well as the initial condition for the single spin modelSLSmc(β ), and is compared with the entropy
SLSie(β ) marked by black dots. (B): The thermal evolution for two probability assignments: the curve
marked by black triangles incorporates the stochastic temporal evolution as well as the initial condition
for the many spin modelSMSmc(β ), and is compared with the entropySMSie(β ) of the same model
marked by black pentagons. The figure is made usingD

kB
as energy-unit and realistic values forb and

E, b = E = .01D
kB

.

comes from the fact that there are
(N

m

)

realizations of this state. Due to the fact that
the thermal evolution is independent of the site index the appropriate choice for the
initial condition is a binomial density:pMS(m | 0) = 1

2N

(N
m

)

. Using this initial condition
it is straightforward to obtainpMSmc(m | β ) and to calculate the entropy (11). The
multiplicity of energy levels is taken into account by incorporating it in the probability
assignment:pMSie(m | β ) ∝

(N
m

)

K(m,β ;m), and adapting the normalization accordingly.
The obtained entropies are depicted in figure (1), again it isclear that in the low tem-

perature phase the maximum entropy principle [14] favors the solution of equation (2)
and the appropriate initial condition. In the high temperature phase there is little differ-
ence between both probability assignments and the principle gives no compelling reason
to prefer one assignment above the other. However only the Markov representation gives
in both regimes an entropy that is either maximal or almost numerical equal to the max-
imum entropy.

The queue

According to the generating function of the moments that interpolates for small
g(β ) ≈ 0 from the generating function of a geometric density to thatof a Poisson
density atg(β )≈ 1, there are two possible candidates for the initial densityof the queue
i.e. the geometric density with a probability proportionalto pn and a Poisson density
exp(−λ )λ n

n! . In case of the geometric initial density we can use the generating function
of the probability to obtain the solution of equation (2):pgeo(n,β ) ∝ Σn(p,β ) while for
the Poisson density we have to solve equation (2) numerically.
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FIGURE 2. The entropies of anM/M/∞-queue. In figure (A) the entropies resulting from a probability
assignment that incorporates the stochastic evolution with two different initial conditions are compared.
The entropy starting from the Poisson density (black squares) is larger than the entropy starting from
a geometric density (black dots). In figure (B) the entropiesof an M/M/∞-queue based on quantum
statistical methods are shown. The Shannon entropy (black triangles) is obtained using the probability
density obtained from diagonal elements of the propagator,the equilibrium entropy (black pentagons) is
calculated directly from the partition function.

Once the probabilities are known the expectation of their logarithm can be calculated
to obtain their entropy. The results are shown in figure (2-A)and it is evident that the
thermal evolution of the density with the Poisson density asinitial condition leads to the
maximum entropy. Indeed in the construction of theM/M/∞-queue one assumes that
the customers enter the facility according to a Poisson density. The initial geometric
condition introduces a new assumption leading according tothe maximum entropy
principle to a lower entropy.

Suppose that we insist on the use of the quantum statistical techniques [15, 16, 17]
to make statements about the entropy of the queue. In that case we will employ the
resemblance with the displaced oscillator and in order to deal with a hermitian model we
chose the ratesλ andγ equal. We can calculate an entropy using the partition function
Seq = β (U − F) whereU is the internal energy andF is the free energy. Using the
diagonal part of the propagator:pie(n,β ) ∝ K(n,β | n,0) as a probability assignment an
using expression (11) is also a possibility.

Both entropies are shown in figure (2-B). First we remark thatthe entropy calculated
directly from the partition function differs from the Shannon entropy, calculated from the
diagonal parts of the propagator. Both show a thermal evolution that is in contradiction
with the thermal evolution of the entropy of the queue. Clearly indicating that the
probability assignment based on the stochastic evolution of the system is not necessarily
compatible with the probability assignments often used in their quantum statistical
counterparts.



What about Gibbs?

The analysis of the entropies of the magnetic system could lead to the impression that
one of the probability assignments leads to a reliable approximation of the other with
respect to the thermal evolution of the system. The example with the queue excludes
this impression. Invoking the maximum entropy principle isnot adequate because the
answer would depend on the precise value ofβ at high temperature the entropies shown
in figure (2-B) are larger than those shown in figure (2-A) while for low temperatures it
is the other way around. Therefore we have investigated whatassignment is compatible
with the one Gibbs used in the case of thermal equilibrium.

Let us consider the spectral representation of the propagator (7) and rewrite equa-
tion (2): p(m,β ) = ∑ν U(m,ν)exp(−βεν)∑l U

−1(ν, l)p(l ,0). Introducingw(ν,β ) =
∑l U

−1(ν, l)p(l ,β ) we find that

w(ν,β ) = exp(−βεν)w(ν,0). (12)

Noting that| ν〉 is an eigenstate of the generator of the Markov process and therefore
proportional to an eigenstate of the Hamiltonian, we see that equation (2) is compatible
with the Gibbs assumption while the probability assignmentbased on the diagonal part
of the propagator requires that the states| k〉 are eigenstates ofH in order to achieve
compatibility.

ACKNOWLEDGMENTS

This work has been performed partly in the framework of the GOA BOF UA 2000
projects of the Universiteit Antwerpen.

REFERENCES

1. D. Deutsch,Phys. Rev. Lett.50, 631 (1983).
2. A. Stotland, A. A. Pomeransky, E. Bachmat, and D. Cohen,Europhys. Lett.67, 700 (2004).
3. B. Bakar, and L. F. Lemmens,Phys. Rev. E71, 046109 (2005), also on cond-mat/0502277.
4. R. N. Bhattacharya, and E. C. Waymire,Stochastic Processes with Applications, John Wiley & Sons,

New York, 1990.
5. D. S. Rokhsar, and S. A. Kivelson,Phys. Rev. Lett.61, 2376 (1988).
6. C. Castelnova, C. Chamon, C. Mudry, and P. Pujol,Annals of Physics318, 316 (2005).
7. H. J. Lipkin, N. Meshkov, and A. J. Glick,Nucl. Phys.62, 188 (1965).
8. J. R. Klauder, and B.-S. Skagerstam,Coherent States - Applications in physics and mathematical

physics, World Scientific, Singapore, 1985.
9. R. Botet, R. Jullien, and P. Pfeuty,Phys. Rev. Lett.49, 478 (1982).
10. J. Vidal, G. Palacios, and R. Mosseri,Phys. Rev. A69, 022107 (2004).
11. J. Vidal, R. Mosseri, and J. Dukelsky,Phys. Rev. A69, 054101 (2004).
12. S. Dusuel, and J. Vidal,Phys. Rev. Lett.93, 237204 (2004).
13. R. P. Feynman,Statistical Mechanics: A Set of Lectures, Benjamin, New York, 1972.
14. A. Caticha,Found. Phys.30, 227 (2000).
15. M. Doi,J. Phys. A9, 1465 (1976).
16. L. Peliti,J. Phys.46, 1469 (1985).
17. D. C. Mattis, and M. L. Glasser,Rev. Mod. Phys.70, 979 (1998).


