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Abstract. We recently proposed a quasi-efficient maximum likelihood approach for blindly sepa-
rating Markovian time series. In the present paper, we extend this idea to bi-dimensional sources
(in particular images), where the spatial autocorrelation of each source is described using a second-
order Markov random field. The experimental results using artificial and real images prove the
advantage of the method with respect to the maximum likelihood approaches which do not take into
account the source autocorrelation, and the autocorrelation-based methods which ignore the source
non-Gaussianity.
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INTRODUCTION

Linear instantaneous blind source separation consists in recovering unobserved source
signals from several observed signals which are supposed to be linear instantaneous
mixtures of these sources. It has been shown that this goal can be achieved by exploiting
non-Gaussianity, autocorrelation or non-stationarity of sources [1], leading to numerous
algorithms [2].

We recently proposed [3] a quasi-efficient Maximum Likelihood (ML) approach
for blindly separating mixtures of temporally correlated, independent sources where a
Markov model was used to simplify the joint Probability Density Functions (PDF) of
successive samples of each source. This approach exploits both source non-Gaussianity
and autocorrelation in a quasi-optimal manner. The theoretical analysis and the ex-
perimental results proved its advantage with respect to the ML methods which ignore
the source autocorrelation [4] and the autocorrelation-based methods which ignore the
source non-Gaussianity [5], [6].

In this paper, our objective is to extend this idea to bi-dimensional sources (in par-
ticular images), where the spatial autocorrelation of each source is described using a
second-order Markov Random Field (MRF). The idea of using MRF for image separa-
tion has recently been exploited by other authors [7], where the source PDF are supposed
to be known, and are used to choose the Gibbs priors. In the present work, however, we
make no assumption about the source PDF so that the method remains quasi-efficient
whatever the source distributions.



PROBLEM STATEMENT

In its simplest form, blind separation of bi-dimensional sources (in particular images)
can be formulated as follows. Assume we have N � N1

� N2 samples of a K-dimensional
vector x

�
n1 � n2 � resulting from a linear transformation x

�
n1 � n2 � � As

�
n1 � n2 � , where

s
�
n1 � n2 � is the vector of independent image sources si

�
n1 � n2 � , each one of dimension

N1
� N2 and possibly spatially autocorrelated, and A is a K � K invertible matrix. Our

objective is to estimate the separating matrix B � A � 1 up to a diagonal matrix and a
permutation matrix.

One of the separation approaches consists in maximizing the likelihood function
of the observations. This approach has the advantage of providing an asymptotically
efficient estimator (smallest error covariance matrix among unbiased estimators). For
i.i.d. sources, this method has been used by Pham and Garat [4].

It is known that the autocorrelation of each source may be used for improving the
estimation [2]. This additional information can actually make the estimation of the
model possible in cases where the basic ICA methods cannot estimate it, for example,
if the sources are Gaussian but autocorrelated. However, most of the methods exploiting
the autocorrelation are second-order methods [5], [6] which generally provide unbiased
but non-efficient estimators.

In [3], we proposed an extension of the Pham-Garat ML algorithm to the case of
temporally correlated sources represented by Markov models. We now want to extend
our method to 2-dimensional signals.

The ML method consists in maximizing the joint PDF of all the samples of all the
components of the vector x (all the observations), with respect to the separating matrix
B. We denote this PDF

fx
�
x1

�
1 � 1 ���������	� xK

�
1 � 1 ���������
� x1

�
N1 � N2 ����������� xK

�
N1 � N2 ��� (1)

Under the assumption of independence of the sources, this function is equal to

� 1�
det

�
B � 1 � � �

N
K

∏
i  1

fsi

�
si

�
1 � 1 ���������
� si

�
N1 � N2 ��� (2)

where fsi

��� � represents the joint PDF of N samples of the source si. Each joint PDF can be
decomposed using Bayes rule in many different manners following different sweeping
trajectories within the image corresponding to source si. Contrary to the temporal case,
there are several logical sweeping schemes preserving the continuity and so, allowing
the exploitation of the spatial autocorrelation. Some of them are shown in Fig. 1. These
schemes being essentially equivalent, we chose the first one (horizontal sweeping).
Then, the source joint PDF fsi

�
si

�
1 � 1 ��� si

�
1 � 2 ���������
� si

�
1 � N2 ��� si

�
2 � 1 ���������	� si

�
N1 � N2 ��� can

be decomposed using Bayes rule to obtain

fsi

�
si

�
1 � 1 ��� fsi

�
si

�
1 � 2 � � si

�
1 � 1 ��� fsi

�
si

�
1 � 3 � � si

�
1 � 2 ��� si

�
1 � 1 ���������������

fsi

�
si

�
1 � N2 � � si

�
1 � N2 � 1 ���������
� si

�
1 � 1 ��� fsi

�
si

�
2 � 1 � � si

�
1 � N2 ����������� si

�
1 � 1 ���������������

fsi

�
si

�
N1 � N2 � � si

�
N1 � N2 � 1 ���������
� si

�
1 � 1 ��� (3)
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FIGURE 1. Different sweeping possibilities.
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FIGURE 2. second-order Markov random field.

SIMPLIFYING THE LIKELIHOOD FUNCTION USING A
MARKOV MODEL

Equation (3) may be simplified by assuming a Markov model for the sources. We
suppose hereafter that the sources are second-order Markov random fields, i.e. the
conditional PDF of a pixel s

�
n1 � n2 � given all the other pixels is equal to its conditional

PDF given its 8 nearest neighbors (Fig. 2). From this assumption, it is clear that the
conditional PDF of a pixel not situated on the boundaries, given all its predecessors
(in the sense of sweeping trajectory) is equal to its conditional PDF given its three top
neighbors and its left neighbor (squares in Fig. 2). In other words, if Dn1 � n2

is the set of
pixel values si

�
k � l � such that

�
k � n1 � or

�
k � n1 � l � n2 � , then

fsi

�
si

�
n1 � n2 � �Dn1 � n2 � � fsi

�
si

�
n1 � n2 � � si

�
n1 � n2 � 1 ��� si

�
n1 � 1 � n2 � 1 ���

si

�
n1 � 1 � n2 ��� si

�
n1 � 1 � n2 � 1 ��� (4)

If N is sufficiently large, the conditional PDF of the pixels located on the left, top and
right image boundaries (for which, the 4 mentioned neighbors are not available) may be
neglected in (3). Supposing that the sources are stationary so that the conditional PDF
(4) does not depend on n1 and n2, it follows from (4) that the decomposed joint PDF (3)
can be rewritten as

fsi

�
si

�
1 � 1 ��� si

�
1 � 2 ���������
� si

�
1 � N2 ��� si

�
2 � 1 ���������	� si

�
N1 � N2 �����

N1

∏
n1  2

N2 � 1

∏
n2  2

fsi

�
si

�
n1 � n2 � �

si

�
n1 � n2 � 1 ��� si

�
n1 � 1 � n2 � 1 ��� si

�
n1 � 1 � n2 ��� si

�
n1 � 1 � n2 � 1 ��� (5)

The likelihood function may be then obtained by replacing (5) in (2). Finally, taking the



logarithm, the log-likelihood function can be obtained as

N log
� �

det
�
B � � � �

K

∑
i  1

N1

∑
n1  2

N2 � 1

∑
n2  2

log fsi

�
si

�
n1 � n2 � � si

�
n1 � n2 � 1 ���

si

�
n1 � 1 � n2 � 1 ��� si

�
n1 � 1 � n2 ��� si

�
n1 � 1 � n2 � 1 ��� (6)

Dividing the above cost function by N and defining the spatial average operator EN �
� � �

1
N ∑N1

n1  2 ∑N2 � 1
n2  2 �

� �
, Equation (6) may be rewritten in the following simpler form

L1 � log
� �

det
�
B � � � � EN �

K

∑
i  1

log fsi

�
si

�
n1 � n2 � � si

�
n1 � n2 � 1 ��� si

�
n1 � 1 � n2 � 1 ���

si

�
n1 � 1 � n2 ��� si

�
n1 � 1 � n2 � 1 ��� � (7)

Maximizing the above function with respect to the separating matrix B requires the com-
putation of its gradient. Computing the derivative of (7) with respect to the separating
matrix B, we obtain

∂L1

∂B
� B � T � EN �

K

∑
i  1

∂
∂B

log fsi

�
si

�
n1 � n2 � � si

�
n1 � n2 � 1 ��� si

�
n1 � 1 � n2 � 1 ���

si

�
n1 � 1 � n2 ��� si

�
n1 � 1 � n2 � 1 ��� � (8)

Defining the set ϒ � ���
0 � 0 ��� � 0 � 1 ��� � 1 � � 1 ��� � 1 � 0 ��� � 1 � 1 � � , and using the chain rule, we

can write

∂
∂B

log fsi

�
si

�
n1 � n2 � � si

�
n1 � n2 � 1 ��� si

�
n1 � 1 � n2 � 1 ��� si

�
n1 � 1 � n2 ��� si

�
n1 � 1 � n2 � 1 ��� �

∑�
k � l ��� ϒ

∂ log fsi

�
si

�
n1 � n2 � � si

�
n1 � n2 � 1 ��� si

�
n1 � 1 � n2 � 1 ��� si

�
n1 � 1 � n2 ��� si

�
n1 � 1 � n2 � 1 ���

∂ si

�
n1 � k � n2 � l �

� ∂ si

�
n1 � k � n2 � l �

∂B

The first derivative in the sum is defined as the opposite of the conditional score function
of the source si with respect to the term si

�
n1 � k � n2 � l � , which will be denoted by

ψ
�
k � l �

si

�
n1 � n2 � :

ψ
�
k � l �

si

�
n1 � n2 � �

� ∂ log fsi

�
si

�
n1 � n2 � � si

�
n1 � n2 � 1 ��� si

�
n1 � 1 � n2 � 1 ��� si

�
n1 � 1 � n2 ��� si

�
n1 � 1 � n2 � 1 ���

∂ si

�
n1 � k � n2 � l �

The second derivative in the sum is equal to

∂ si

�
n1 � k � n2 � l �

∂B
� ∂eT

i Bx
�
n1 � k � n2 � l �

∂B
� eix

T �
n1 � k � n2 � l � (9)



where ei is the i-th column of the identity matrix. Thus, we can write

∂L1

∂B
� B � T � EN � ∑�

k � l ��� ϒ

� K

∑
i  1

ψ
�
k � l

si

�
n1 � n2 � ei � � xT �

n1 � k � n2 � l � � (10)

However, ∑K
i  1 ψ

�
k � l

si

�
n1 � n2 � ei is nothing but a column vector containing the score func-

tions ψ
�
k � l �

si

�
n1 � n1 � of the K sources. Denoting this vector by Ψ

�
k � l �

s
�
n1 � n2 � , the gradient

(8) can be rewritten as

∂L1

∂B
� B � T � EN � ∑�

k � l ��� ϒ
Ψ

�
k � l �

s
�
n1 � n2 � � xT �

n1 � k � n2 � l � � (11)

PRACTICAL IMPLEMENTATION

In practice, the actual sources being unknown, their densities could be estimated only
via the reconstructed sources ŝ

�
n1 � n2 � � B̂x

�
n1 � n2 � . It is clear that this estimation is not

correct at the first steps of the optimization procedure. However, as we showed in [3] for
the temporal case, under mild conditions the method converges rapidly toward the actual
sources so that the estimation becomes more and more accurate. The score functions of
the reconstructed sources are estimated using a non-parametric method proposed in [8]
involving the estimation of joint entropies using a discrete Riemann sum and the third-
order cardinal spline kernels. The estimation of the separating matrix B is done using a
batch iterative approach. At each iteration, using the current value of the matrix B, the
conditional score functions of the estimated sources are estimated and the gradient (11)
is computed. Afterwards, the matrix B is updated for maximizing the cost function (7)
using a relative gradient ascent scheme for achieving an equivariant estimation [9]:

Bnew � �
I � µ

∂L1

�
B �

∂B
BT

old � Bold (12)

Denoting H � ∂L1
�
B �

∂B BT
old and Using (11), we can write

H � I � EN � ∑�
k � l ��� ϒ

ψ
�
k � l �

s
�
n1 � n2 � � ŝT �

n1 � k � n2 � l � � (13)

Because of the scaling indeterminacy, the diagonal entries of the matrix H have no
importance. Thus, we can replace H by only the second term of the right hand of (13),
denoted G:

G � � EN � ∑�
k � l ��� ϒ

ψ
�
k � l �

s
�
n1 � n2 � � ŝT �

n1 � k � n2 � l � � (14)

Hence, the update formula (12) becomes

Bnew � �
I � µG � Bold (15)

To remove the ambiguity due to the scaling indeterminacy, the rows of the separating
matrix B are normalized at each iteration so that the estimated sources have unit vari-
ance.
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FIGURE 3. Mean of SIR as a function of the coefficient ρ1 � � 1 of the second AR filter.

EXPERIMENTAL RESULTS

In the first experiment, we use artificial image sources of size 50 � 50 which satisfy
exactly the considered Markov model. Two independent white and uniformly distributed
image noises, e1

�
n1 � n2 � and e2

�
n1 � n2 � , are filtered by two autoregressive (AR) filters

using the following formula:

si

�
n1 � n2 � � ei

�
n1 � n2 � � ρ0 � 1si

�
n1 � n2 � 1 � � ρ1 � � 1si

�
n1 � 1 � n2 � 1 �

� ρ1 � 0si

�
n1 � 1 � n2 � � ρ1 � 1si

�
n1 � 1 � n2 � 1 � (16)

The coefficients ρi � j are chosen to guarantee a sufficient stability condition proposed
in [10]. Thus, the coefficients of the first and the second filters are respectively fixed
to
� � 0

�
5 � 0 � 4 � 0 � 5 � 0 � 3 � and

� � 0
�
5 � ρ1 � � 1 � 0 � 5 � 0 � 3 � . The coefficient ρ1 � � 1 of the second

filter may change in its stability interval, i.e. � 0
�
2 � 0 � 6 �

. Then, the source images si

�
n1 � n2 �

are mixed by the mixing matrix A �
�

1 0
�
99

0
�
99 1 � .

We compare our method with two well-known algorithms: SOBI [6] and Pham-Garat
[4]. SOBI is a second-order method which consists in jointly diagonalizing several
covariance matrices evaluated at different lags. The Pham-Garat algorithm is based on
a maximum likelihood approach which supposes that the sources are i.i.d. and therefore
does not take into account their possible autocorrelation.

For each method, the experiment was repeated 100 times corresponding to 100 differ-
ent seed values of the random variable generator. For each experiment, the output Signal

to Interference Ratio (in dB) was computed by SIR � 0
�
5 ∑2

i  1 10log10
E � s2

i �
E � � ŝi � si � 2 � , after

normalizing the estimated sources, ŝi

�
n1 � n2 � , so that they have the same variances and

signs as the source signals, si

�
n1 � n2 � . The mean of SIR as a function of the coefficient

ρ1 � � 1 of the second AR filter is shown in Fig. 3. Our algorithm outperforms the other
two, whatever ρ1 � � 1. It can be remarked that the SOBI algorithm fails to separate the
sources when ρ1 � � 1 � 0

�
4. It is not surprising because for this value of ρ1 � � 1, the two

filtered sources are generated by the same AR filter and have the same spectral den-
sities. It is well-known that this second-order method is not able to separate such sources.



In the second experiment, two 250 � 250 astrophysical image sources are mixed and
the three above-mentioned algorithms are used for separating them. It is clear that the
working hypotheses are no longer true because on the one hand the images are not sta-
tionary and on the other hand they cannot be described by a second-order MRF. Two

mixing matrix A1 �
�

1 0
�
3

0
�
3 1 � and A2 �

�
1 0

�
99

0
�
99 1 � , corresponding respec-

tively to weakly mixed and highly mixed sources, are successively used for this experi-
ment. Our method led to 70-dB SIR with the first mixing matrix but it failed to separate
the sources with the second matrix. A bad initial estimation of the conditional score
functions in the second case may explain this result. In fact, the actual sources being
unknown, the score functions are estimated from the reconstructed sources which are
initialized to the mixtures. In the case of highly mixed sources, the mixtures are com-
pletely different from the sources so that the score functions are badly estimated at the
first steps of the iterative algorithm. As we have shown in [3], when the sources satisfy
the working hypotheses (stationarity, Markov model, ...), the algorithm is robust to this
bad initialization and the outputs converge rapidly toward actual sources where a good
estimation of the score functions is possible. However, when the working hypotheses are
not satisfied, it seems that the algorithm is sensitive to the initial estimation of the score
functions. That is why it works well when the sources are weakly mixed: the mixtures
are somewhat similar to the sources so that the initial estimation of the score functions
is acceptable.

This analysis suggests a solution to our problem when the sources are highly mixed:
initializing our method with a sub-optimal method like SOBI to obtain a low-ratio
mixture, then applying our Markov method to finish with a quasi-optimal estimation.
Using this procedure, we obtained a 70-dB SIR while SOBI led to 36dB and the Pham-
Garat algorithm to 13dB. The initial sources, the mixtures and the reconstructed sources
using SOBI and using Markov (initialized by SOBI) are shown in Fig. 4. It can be easily
verified that the sources separated by our algorithm are extremely similar to the actual
sources while each of the sources separated by SOBI contains some residual of the other
source.

CONCLUSION

In this paper, we proposed a maximum likelihood approach for blind image separation
which takes into account both non-Gaussianity and spatial autocorrelation of the sources
using a Markov model. The first simulations using artificial and real images confirm
the good performance of our method in comparison to the classical methods which
only take advantage of one of the above source properties. Our current method uses a
non-parametric estimation of the conditional score functions and a gradient algorithm
for maximizing the likelihood function. As a result, it is very time consuming. We
are currently working on a parametric polynomial estimator of the conditional score
functions, and on a modified equivariant Newton optimization algorithm to reduce the
computational cost.
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FIGURE 4. Experiment using astrophysical images.
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