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Abstract. Flexible and reliable non-parametric distribution estimation is achieved by using
exponential splines. In Bayesian function estimation the number of spline knots as well as the
parameters for knot position, amplitude and stiffness are marginalized. The resulting marginal
posterior probability distribution allows to estimate profiles, profile gradients and their uncertainties
in a natural way.
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INTRODUCTION

Reliable profile and profile gradient estimates are of utmost importance for many dif-
ferent physical models in fusion science, e.g. transport modeling. The results often cru-
cially depend on the functional representation of the profile. The estimation uncertainty
of the profile and, in particular, the estimation of the profile gradient and its uncertainty
is closely coupled with the provided profile flexibility. Flexibility is frequently obtained
by using non-parametric profile functionals, e.g. linear interpolation between pointwise
estimations or cubic or B-splines. Profile flexibility to allow for a form-free description
of the data often competes with profile reliability. As the number of degree-of-freedom
(DOF) increases the estimation reliability decreases. Reliability is frequently obtained
in plasma physics profile estimation by either providing a family of tailored parametric
functionals or piecewise polynomial functions combined with modified hyperbolic tan-
gent functions (tanh). The aim is to have a robust technique to allow for a reasonable
balance between flexibility and reliability in order to achieve balance between modeling
the significant information content in the data and avoiding noise fitting.

EXPONENTIAL SPLINES

Consider a set of function values
���

given at � support points � � (knots). The exponential
spline function � �	��
� in the interval � ����
�� � ���� is then given by [1]� ����
����������� �	��
"! � ���#�%$&�(')�*��
+! � ���#�-,.��/0�	��
+! � ���21 (1)



The auxiliary functions 354 and 604 contain a stiffness parameter 7�4 on the support 8 9�4;:;9<4>=?	@
and are given by the hyperbolic functions3A4*B�C+DE9F4�GIH J&KMLFNPORQ�8S7 4	B�C+DE9F4TG�@UDWV�X�YP7�Z4 (2)604	B�C+DE9F4�GIH [#KMO]\(^_Q�8`704*B�C+DE9F4�G	@UD%704�B�C+DE9F4�G2X�YP70a4 (3)

From the series expansions of the hyperbolic functions we obtain the two limiting
cases of a cubic spline ( 7-b c ) and a linear interpolation ( 7db e ) [1]. Since the
stiffness parameters 704 are allowed to vary over the intervals 8f9�4g:T9F4>=?�@ the character of the
exponential spline function might vary from linear to third order polynomial on adjacent
support intervals which provides extremely high flexibility.

The so far unknown coefficients hi:kjl:;m):gn are determined from the requirement of
continuity of function, first and second derivatives at the knot positions 9U4 . Continuity
of function and second derivative yields already an explicit representation of the expo-
nential spline function in terms of function values K�o�4kX and second derivatives K�p�4;X at
the knot positions Kq9�4kX . Introducing the definitions r04sHt9F4>=?sDu9F4 , vF4sHw7 4	B�CxDu9F4TG , andy 4zH�704�r 4 , we obtain{ 4	B�CG|H 9F4>=? D}Cr_4 oq4q~ C"D}9<4r 4 oM4�=?~ p�47 Z4 � O]\�^ Q�B y 4�DuvF4TGO]\�^ Q�B y 4�G ~ vF4y 4 D�V ��~ pW4�=?7 Z4 � OR\(^ Q�BTvF4�GO]\(^_Q�B y 4�G D vF4y 4 � (4)

The terms involving the function values o�4 and oM4>=? represent the linear interpolation
part of

{ 4	B�CG . The terms involving the second derivatives p�4 and pW4>=? introduce the
curvature. In order to determine the so far unknown second derivatives K�p�4;X in terms of
the function values K�oU4kX we use finally the continuity requirement for the first derivative.
This yields the system of equationspW4(�0?]r_4(�0? O]\(^_Q�B y 4��0?RG�D y 4��0?y Z4��0? O]\(^_Q�B y 4��0?RG ~pW4 � r_4(�0? y 4(�0?ULFNPORQ y 4(�0?0D}OR\(^ Q y 4��0?y Z4(�0? O]\�^ Q y 4(�0? ~dr_4 y 4�LFNPORQ y 4�D}OR\(^ Q y 4y Z4 O]\�^ Q y 4 �pW4>=?]r_4 O]\(^_Q y 4�D y 4y Z4 OR\(^ Q y 4 H oM4�=?�D%oM4r 4 D oq4�D%oq4(�0?r_4(�0? (5)

For � knots this is a system of �tDdJ equations. The system can be closed by puttingp�?�Htp���H�c or by given values of the first derivative at the end points.
To estimate profiles and profile gradients from noisy data �z4Hw�sB�C04TG it is useful to

have the linear representation of the exponential spline as a function of the stiffness
parameters �7 at ��� positions �C , e.g. at the data abscissae,{ B �CGIH ��B �C�:��7�:&�9�G��o (6)

The ( �����E� ) matrix � can be separated into two parts ��? and � Z . ��? represents
the coefficients of o in (4). � Z is obtained by multiplying the coefficients of p with the



solution of the system (5) including the two additional constraints chosen. For numerical
stability approximations have to be applied for large as well as for small values of � . The
profile gradient is straightforwardly calculated from analytical derivatives of � with
respect to � , ���T �¡�¢�£t�¤�� �¡��¥ ¡��¥ ¡¦ ¢ ¡§ .
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FIGURE 1. Left: Sample of an exponential spline with 6 knots. The stiffness parameters ¨�©kª�«�¬} ®°¯ ,
determine if the exponential spline segments are similar to a cubic spline, to a linear curve or if it has
intermediate properties. Right: Ion temperature profile and profile gradient marginalized over all number
of knots.

The left panel of figure 1 depicts a typical exponential spline with heterogeneous
properties in its segments. The 5 segmental stiffness parameters between 6 spline knots
determine if the exponential spline is similar to a cubic spline, to a linear segment or if
it has intermediate properties.

THE BAYESIAN FRAMEWORK

In our Bayesian approach we focus on the probability of the profile having a value �²± at
any position �z± represented by ³) ;�0±P´ ¡µ ¥k¶·¥¹¸º¢ . This posterior probability depends on the
full data set ¡µ , a model ¶ for the profile functional to be used and all relevant informa-
tion ¸ concerning the nature of the physical situation and knowledge of the experiment.¸ includes knowledge about the noise level of the experimental measurements, addi-
tional knowledge about the profile or profile gradient, e.g. positivity constraints, physi-
cal constraints resulting in strictly monotonic profiles or maximum gradient values from
stability criteria. All these specifications might play a crucial role since they provide
information that restricts the profiles to physically sound solutions.

Equation (6) allows us to focus on ( ¡§ , ¡� , ¡¦ ) as the fundamental set of parameters to be
estimated. According to Bayes theorem the posterior probability for ( ¡§ , ¡� , ¡¦ ) is³)  ¡§ ¥ ¡��¥ ¡¦ ´ ¡µ ¥U¡» ¥k¼½¥�¸º¢�£ ³�  ¡µ ´ ¡§ ¥ ¡��¥ ¡¦ ¥k¼½¥¹¸¾¢2³)  ¡§ ¥ ¡��¥ ¡¦ ´ ¼½¥�¸º¢³)  ¡µ ´f¼¿¥�¸º¢ À (7)

The number of knots ¼ are given explicitely since it is a model parameter effecting the
fitting properties. The denominator (evidence of the data)³)  ¡µ ´f¼¿¥�¸º¢�£tÁ µ�Â § µ�Â�Ã0Ä � µ�ÂÅÃ#Æ�¦ ³�  ¡µ ´ ¡§ ¥ ¡��¥ ¡¦ ¥k¼½¥¹¸¾¢2³)  ¡§ ¥ ¡��¥ ¡¦ ´ ¼½¥�¸º¢ (8)



guarantees that the posterior is normalized. In our adaptive model the evidence plays a
central role in determining the number of spline knots Ç .

The Likelihood

The likelihood of the experimental data, È)É²ÊËÅÌ ÊÍ�Î ÊÏ Î ÊÐ Î ÊÑ Î ÇÓÒ , quantifies the probability
of measuring the data set ÊË , given their uncertainties ÊÍ and given the profile parametersÊÏ Î ÊÐ Î ÊÑ of Ç spline knots. The data analyzed in this work are given by spatially resolved
profile measurements from various diagnostics [2]. Since the underlying level of uncer-
tainty of the data is frequently difficult to estimate in plasma physics, relative uncertain-
ties are often reasonably described but the absolute value might be subject of discussion.
To allow for flexibility in the absolute scale of the uncertainties a factor Ô�Õ is introduced
which scales the uncertainties of data set ÊË Õ measured/derived from diagnostic Ö . Within
a diagnostic the scaling factor of the errors are assumed to be unique whereas they might
differ between different diagnostics. A value of ÔMÕØ×tÙ means that the diagnostician has
overestimated the uncertainty ("conservative") whereas a value of Ô�ÕºÚ�Ù means that the
error was underestimated (maybe by neglecting systematic error sources). The uncer-
tainty scaling parameters ÔqÕ are often useful when within an Integrated Data Analysis
(IDA) approach [3] the data from heterogeneous diagnostics have to be combined. If the
analysis of the individual diagnostics data would comprise the correct description of the
measurement and the physical model, and if all sources of measurement (statistical and
systematic) errors are considered in the likelihood, then the scaling parameters Ô�Õ would
not be needed. The nuisance parameters ÔUÕ can be estimated or marginalized.

The likelihood for the present data from profile measurements is assumed to be
Gaussian with independent normally distributed uncertainties. Assuming independent
uncertainties the total likelihood is the product over all likelihoods for Û�Õ data ÊË Õ derived
from diagnostic Ö with uncertainty scaling factor ÔUÕÈ�É ËPÜ Õ Ì Í Ü Õ Î Ô�Õ Î ÊÏ Î ÊÐ Î ÊÑ Î Ç Î¹Ý Ò)Þ Ùß àUá É;ÔqÕ Í Ü Õ�Ò*âäã.åzæxç¾è É ËPÜ Õ è%é Ü Õ�Ò âà É;Ô�Õ Í Ü Õ�Ò*âëê (9)

where é Ü is the exponential spline value calculated with parameter set ( ÊÏ Î ÊÐ Î ÊÑ Î Ç ).

The prior probabilities

The prior pdf, È)É�ÊÏ Î ÊÐ Î ÊÑ Î ÊÔ Ì ÇìÒ , constitutes information we have about the parameters
independent of the measured data. The uncertainty scaling factors ÊÔ used in the likeli-
hood pdf adds to the specified parameter list. According to the product rule of Bayesian
probability theory the prior can be split into the individual partsÈ)É�ÊÏ Î ÊÐ Î ÊÑ Î ÊÔ Ì ÇÓÒ|Þ È)É�ÊÏ Ì ÇìÒ2È)É<ÊÐ�Ì ÇÓÒ.È)É�ÊÑsÌ ÇÓÒ.È)É ÊÔUÒ (10)

where the symbol Ý is omitted for practical reasons. The prior for the knot amplitudes,È)É ÊÏ Ì ÇÓÒ , was chosen to be constant for positive values below a reasonable upper limit



and zero elsewhere í)î�ïð�ñfòìó�ôöõø÷ù2ú ô�û�üý]þ ÷ ÷ÿ�� ��� � ��� ð ý � ð
	���� ����������������� (11)

The prior for the stiffness parameters was chosen to be Jeffrey’s prior since � is a
scale parameter í)î ï� ñfòÓó�ô ���� ûWü! ÷ý]þ ÷ ��"$#�% � ���% �'& (�) ÷%+* � � 	!,.- � � ý � � 	���� ���/���0�����0��� (12)

where the boundaries of � are chosen to allow both liming cases of cubic splines and
polygon interpolation. For numerical benefits it is useful to calculate in terms of the
logarithm of lambda. The equivalent prior for the logarithm of lambda is a constant
prior between the boundaries and zero elsewhere.

The prior for the knot positions assumes that the positions are ordered, that a minimum
distance between neighboring positions is given and that there has to be at least one data
point between neighboring positions. The end point positions are set to be at the plasma
center 1 ÷ ô � and at the plasma edge 1 ü ô32�	���

, respectively. A noncommittal prior is
given by the uniform prior taking into account the minimum spacing 451 and the required
ordering of the knot positions ( 1 ÷'6 451 � 1�7 � 1�7 6 4$1 � 198 �;:<:<:=� 1 ü! ÷=6 451 � 1 ü ) [4].
The prior on

ï1 is

í�î ï1 ñfò?> 451 ó²ôA@  ÷ û üB þ 7DC�E 1 B  ÷=6 451 � 1 BGF , where the function C is one
when its argument conditions are true and zero otherwise. The normalization integral@ ôIHIJLK  NM üO 7QPSR JJUTLV R J W 197 HIJLK  NM üO 8QPXR JJLYUV R J W 198 :<:<: HAJ�K  R JJLK'Z Y V R J=W 1 üO ÷ (13)

is easily calculated, resulting iní)î ï1 ñfò[> 451 ó ô î òA\^]�ó�_ û�üB þ 7DC�E 1 B  ÷D6 4$1 � 1 BGFE 1 ü \ 1 ÷ \
î òA\a`Mó 451 F M üO 7QP b (14)

The denominator is simply the total volume of space of the

î òc\^]Pó
parameters 1ed . The

factorial in the numerator accounts for the ordering requirement. The minimum distance451 is chosen small enough to allow flexible profile structures and large enough to avoid
position degeneration. Additionally, the prior for the knot positions is set to zero for all
settings where no data point is between any two neighboring positions.

The prior for the uncertainty scaling factors

ïf is chosen to be Jeffrey’s priorí�î ïf ñfòÓó�ô �� � ûhgji & �lkB þ ÷ �/" #�m � ���m �'& ( ) ÷m�n � f 	!,.- � f B � f 	���� ���/���0�����0��� (15)

because f is a scaling parameter. oqp ,��sr is the number of data sets from different diagnos-
tics used. The boundaries ( f 	!,.-e> f 	��� ) reflect the credibility we assign to the estimation



of the scale of the uncertainties. If detailed prior information about the scale is present
an alternative prior is given by the Gamma-distribution.

For comparison of models with different numbers of spline knots t and for model
marginalization over t we need the prior uwvxt5y . This prior is chosen to be uniform for
all integer values of t between the minimum number, t{zw|~}5��� , and the maximum
number, t�z��+�������'�<���������Sv������^����y����5���e��� , namely uwvxt5y�����t�z��+���at z�|~}¡�c����¢ � and
zero elsewhere.

MCMC sampling of the posterior and number of knots

The posterior probability distribution (7) describes the full solution of our profile esti-
mation problem. Single estimates of the profile, the profile gradient and its uncertainties
can be derived from the maximum and variance of the posterior (maximum-a-posteriori,
MAP solution) or from the mean value and variance of the marginaluwv!£¤¡¥ £¦�§ £¨ § t5y©� ª ¦ £� ¦ £«¬¦ £ uwv!£¤ § £«!§ £� § £ ¥ £¦N§ £¨ § t5y¯® (16)

The mean value and variance of (16), and of the marginals of £« , £� , and £ are estimated
using a Markov Chain Monte Carlo (MCMC) technique.

The most probable number of knots is calculated applying the Bayesian theorem againuwvLt ¥ £¦�§ £¨ y©� uwvLtqy�uwv°£¦ ¥ £¨ § tqyuwv £¦ ¥ £¨ y (17)

where uwvLtqy is the prior on t specified above and uwv £¦ ¥ £¨ y is a normalization constant
which can be determined from ± � uwvLt ¥ £¦N§ £¨ y¬��� . The marginal likelihood uwv²£¦ ¥ £¨ § t5y
quantifies the probability of the data £¦ marginalized over the total parameter space:uwv £¦ ¥ £¨ § tqy©� ª ¦ £¤ ¦ £«¬¦ £� ¦ £ uwv £¦�§ £¤ § £«�§ £� § £ ¥ £¨ § tqy (18)� ª ¦ £« uwv £« ¥ tqy ª ¦ £��uwv £� ¥ t5y ª ¦ £ uwv £ y ³9´µv £«!§ £� § £ y (19)³�´Dv £«!§ £� § £ y©� ª ¦ £¤ u�v £¦ ¥ £¤ § £«!§ £� § £¨ § £ § t5y�uwv £¤¬¥ tqy (20)

The integral over the spline amplitudes £¤ can be calculated analytically because the
likelihood is Gaussian and can be written asuwv°£¦ ¥ £¤ § £«!§ £� § £¨ § £ § t5y¶� �· |¹¸�º �e»¡v ¨ |¹¸  ¸9y+¼ ��½¿¾ÁÀ � �� v°£¦ �ÃÂ £¤ ysÄ ÅÆvj£¦ �^Â £¤ y
Ç (21)

where Å is the inverse covariance matrix with the diagonal elements �
� ¨ ¼|¹¸ . Assuming
that the prior uwv�£¤¬¥ tqy is broader than the likelihood the integration bounds can be extend



to ÈÊÉ and the integral calculates toË9ÌDÍ0ÎÏ�Ð ÎÑ�Ð ÎÒ
Ó¶Ô ÕÖjÌ Í�×eØ ÓeÙDÚ�ÛeÜÝ Þ�ß0à ÍLá ÓÞ�ß�à Íxâ Ó ßGãåäÁæèç?é ×�ê (22)

where
Ö°Ì

is the prior volume of the amplitudes
Îë
. The matrix

â
and the scalar é follow

from a comparison of the coefficients of
Îëâ Ô ìîí á ì (23)é Ô Îï í áñð Õ ç ì â$òNó ì í áõô Îï ö

(24)

The integration over the stiffness parameters
ÎÏ
, the knot positions

ÎÑ
, and the uncertainty

scaling factors ÎÒ is calculated using simple sampling as follows: First, a vector
ÎÏN÷

is sampled from the prior ø Í ÎÏ¯ù.ú Ó . Equivalent to sampling
Ï

from Jeffrey’s prior, the
logarithm of

Ï
is sampled from the uniform distribution. Second, a vector ÎÒ ÷ is sampled

from the prior ø Í ÎÒ ù.ú Ó . Third, unsorted values
ÎÑ�÷

were sampled from the prior ø Í ÎÑ²ù ú Ó .
Then, the values

Ñ�û/ü ÷
were sorted in ascending order. The sorted values

Ñ
û/ü ÷
were accepted

if at least one data point lays between neighboring knots and if all neighboring knots are
more than the minimum distance separated, else a new set of values

ÎÑ9÷
is sampled. Then,Ë9ÌDÍ ÎÏj÷�Ð ÎÑ9÷�Ð ÎÒ ÷ Ó is calculated with the sampled

ÎÏN÷
,
ÎÑ�÷
, and ÎÒ ÷ -values. The value ø Í ÎïOù Îý Ð�ú Ó

and its simple sampling uncertainty were estimated from the mean value þ ËeÌ
ÿ and its
variance.

The marginal posterior distribution of the profile
Îë

independent on the number of
knots provided is given byø Í Îë ù�Îï�Ð Îý Ó¶Ô ��� ø Í Îë ù9Îï�Ð Îý Ðsú Ó ø Í ú ù9ÎïNÐ Îý Ó ö (25)

The terms in the sum are calculated from (16) and (17).

RESULTS

The right panel of figure 1 shows data sets from three different experiments [2] and
an estimate of the ion temperature profile. The solid line and the error bars represent
the mean value and the È Õ standard deviation of the marginal posterior probability
distribution (25). The shape of the exponential spline is close to linearity for ��� Õ�� cm
and �	� Õ�
 cm, and close to a cubic spline in between. The error bars depict a large
variability close to the plasma center and at the plasma edge where the data are sparse.

The left panel of figure 2 shows an estimate of the profile gradient calculated from the
MCMC samples of the analytic derivative of the exponential spline. The gradient profile
is well determined at the linear region where the number of data is large. The gradient
error bars are larger close to the plasma center and in the plasma edge region where the
data are sparse. Due to the methodologically inherent competition between flexibility
and reliability the approach provides a reliable tool for gradient estimation.
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FIGURE 2. Ion temperature profile gradient marginalized over all number of knots. Model probability
for different number of exponential spline knots. MCMC distribution of 3 stiffness parameters � belonging
to the 3 intervals between 4 knots. The exponential spline is linear like (polygon) for small values of �
and cubic-spline like for large values of � , respectively.

The middle panel of figure 2 shows the marginal posterior of the number of spline
knots  (17). 4 spline knots are sufficient to fit the data which is also confirmed by the
marginal distribution of the deviance (not shown here).

The right panel depicts the probability distribution (not normalized) of the logarithm
of three stiffness parameters belonging to the three intervals between 4 knots. The
probability for ��� , �������������� ���� , is large for values ���! resembling the linear behavior
for "$#&%�' cm. The small values for � are ruled out completely showing that the linear
region can not be fitted reasonably by a cubic spline. In contrast to the first interval, ��(
shows a completely different behavior. The second interval between knot 2 and 3 is best
fitted by a cubic spline with small values for � . The large values for � are not ruled out
completely showing that the pedestal region can reasonably be fitted also with a polygon
mainly if the knot positions are sufficiently close. The edge region is dominated again by
a linear behavior if the knot position is sufficiently distant from the gradient region. If the
knot position is close to the gradient region spline-like features become more important.

In conclusion, the non-parametric exponential-spline approach for profile and profile
gradient estimation provides a robust method for a useful balance between flexibility
and reliability. Uncertainties of profiles and gradients is readily derived from data uncer-
tainties. The DOF is determined by the significant information content of the data.
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