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Abstract. Interpolation is the problem of fitting a smoothish curve y
�
x � to data (which may be

noisy), and calibration refers to reading x
�
y � from this curve. This paper presents a fully Bayesian

free-form probabilistic solution controlled by the degree of curvature of the interpolant. The optimal
interpolant is a cubic spline, accompanied by probabilistic uncertainty and the evidence value.
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BAYESIAN FORMULATION

We are given measurements (subject to the usual Gaussian noise)

y � xk ��� Dk � σk for k � 1 � 2 �	�	�
��� n (1)

at “knots” x1 � x2 � �
�	� � xn. As analysts, our aim is to infer suitable curves y � x � that
can be used to calibrate or interpolate, allowing for uncertainty.

With smoothness in mind, we base our analysis on the curvature prior

Pr � y  φ � ∝ exp ��� Q � 2φ � � Q � y ��� � ∞� ∞
y ����� x � 2 dx (2)

where φ is a flexibility parameter to be assigned later. In detail, digitise the x axis into
some huge number N of grid points, separated by an arbitrarily small interval. Positions
thereby become large integers, which can be scaled back later. Local curvature at grid
point i is defined as y ���i � yi � 1 � 2yi � yi � 1 so that the curvature-norm is, in matrix
formulation,

Q � � y ��� � T � y ��� ��� yT Ay (3)

(bold face is used for huge-dimensional vectors and matrices). A is the 4th-derivative
matrix, of arbitrarily high dimension N:

A �
�����������

1 � 2 1� 2 5 � 4 1
1 � 4 6 �

1 � � �� � � 1� 6 � 4 1
1 � 4 5 � 2

1 � 2 1

����������� 
N

(4)

filled with pentadiagonal “1 -4 6 -4 1” rows.



The corners have been arranged so that Q is independent of linear transformations
y ! y � mx � c, as a curvature should be. Necessarily, this makes A singular with two
null eigenvalues, so the prior (2) is improper, leading to an unacceptable zero value of
the evidence Pr � D � . Eventually, we will evade this difficulty, but for now we suppose
some trivial adjustment so that det � A � will not actually be exactly zero. The prior is

Pr � y  φ ���#" det � A � 2πφ � exp ��� Q � 2φ � (5)

Assuming normal errors, the likelihood for the data is

Pr � D  y ��� Z
� 1 exp �$� χ2 � 2 � � Z � n

∏
k % 1 & 2πσ 2

k � χ2 � n

∑
k % 1

� y � xk � � Dk � 2 � σ 2
k (6)

Vector D and the diagonal correlation matrix σ � 2 can be used either in n-dimensional
context, or in huge-dimensional context with many interleaved zeros. Using the latter,
the joint probability underlying our analysis is written as

Pr � y � D  φ ��� Z
� 1 " det � A � 2πφ � exp � 1

2 � yT Ay � φ � � y � D � T σσ � 2 � y � D �	� (7)

Most probable interpolating function y

We are to minimise Q — or, equivalently, yT Ay � φ � � y � D � T σσ � 2 � y � D � — under
constraints at the knots, which we do in stages.

Reduce to finite problem. Constrained variation shows that y ������� is a sum of delta
functions at the knots, so y ����� is piecewise constant, and y is piecewise cubic with
continuous y ��� � y � � y. This alone reduces the initially-huge freedom to a finite list of
parameters, which can be written as

y � x ��� γ0 � γ1x � γ2x2 � γ3x3 � ∑
xk ' x

λk � x � xk � 3 (8)

where the summation is over knots k to the left of x only. More conveniently, y � x � can be
defined by the values yk � y � xk � and curvatures pk � y ��� � xk � at the interval edges, these
being related through the internal (k � 2 �	�
�	�
� n � 1) second-differences of (8)

yk � 1 � yk

xk � 1 � xk
� yk � yk � 1

xk � xk � 1
� xk � 1 � xk

6
pk � 1 � xk � 1 � xk � 1

3
pk � xk � xk � 1

6
pk � 1 (9)

Eliminate curvature. The corners of A were chosen to annihilate linear functions, so
that the optimal interpolant is the “natural” cubic spline being linear beyond the knots
(so that γ2 � γ3 � 0 in (8) and similarly at the right-hand edge). This linear behaviour
implies p1 � 0 on the left and pn � 0 on the right.

In terms of y1 �
�	�	�
� yn, the surviving internal curvatures p2 �	�	�
�
� pn � 1 are defined by (9),
written as

Uy � V p (10)



where U is � n � 2 �)( n tri-diagonal, and V is � n � 2 �)( � n � 2 � tri-diagonal operating
on the range 2 �	�	�	��� n � 1 only. Because V is non-singular, p � V � 1Uy. Meanwhile, the
curvature is piecewise linear over x, so Q �+* p � x � 2dx becomes

Q � 1
3

n � 1

∑
k % 1

� xk � 1 � xk � � p2
k � pk pk � 1 � p2

k � 1 �,� pTV p � yTUTV
� 1Uy (11)

involving the same matrix V as before.
Apply the data. Assign optimal ŷ by minimising Q � φ � χ2, which yields

ŷ � � UTV
� 1U � φ � σ � 2 � � 1σ � 2D (12)

This is better written as

ŷ � D � σ 2UT � Uσ 2UT � φV � � 1UD (13)

which shows how the optimal points differ from the data in the presence of noise.
This completes the optimal solution: (13) gives ŷ1 �	�	�	��� ŷn, (9) gives p̂2 �	�	�	�$� p̂n � 1, and

p̂1 � p̂n � 0, then cubic interpolation and linear extrapolation gives ŷ � x � anywhere else.
Because all the matrices are narrowly banded, all calculation is O � n � fast.

Uncertainty δy

The distribution of y is governed by the joint probability (7), implying the posterior

Pr � y  D � φ � ∝ exp � 1
2 � y � ŷ � T � A � φ � σσ � 2 � � y � ŷ � (14)

The uncertainty δy around the optimal interpolant ŷ has covariance� δyδyT - � � A � φ � σσ � 2 � � 1 (15)

From this, we select the point-wise variance� � δy j � 2 - � � A � φ � σσ � 2 � � 1
j j � φ

adj � A � φ σσ � 2 � j j

det � A � φ σσ � 2 � (16)

of the interpolant at any desired position j.
To evaluate this, begin by calculating the denominator

det � A � φσσ � 2 ���
....................

1 � 2 1� 2 5 � 4 1
1 � 4 6 � 4 1

1 � 4 6 � α � 4 1
1 � 4 6 � 4 1

1 � 4 6 � 4 1
1 � 4 6 � β � 4 1

1 � 4 6 � �
1 � � � 4 1� � 4 5 � 2� 1 � 2 1

....................
N

(17)



where α � β �	�	�	� are the individual knot components φσ � 2
1 � φσ � 2

2 �	�	�	� appearing sporad-
ically down the leading diagonal. This will be built up gradually by adding successive
rows and columns until the full dimension N is reached.

Determinants that terminate with “1 -4 6 -4 1” corners obey a recurrence relation. Let

∆r �
.............
::: ::: :::
::: P ::: 1
::: ::: ::: � 4 1

1 � 4 6 � �
1 � � � 1� 6 � 4

1 � 4 6

.............
r

(18)

be of dimension r. Direct expansion by the last row or column of ∆r and its associated
determinants yields the recurrence relation

∆r � 5∆r � 1 � 10∆r � 2 � 10∆r � 3 � 5∆r � 4 � ∆r � 5 � 0 (19)

for which the general solution is quartic in r, as in the following examples:...........
6 � 4 1� 4 6 � 4 1
1 � 4 6 � �

1 � � � 1� � 6 � 4
1 � 4 6

...........
r

� 1
12 � r � 1 � � r � 2 � 2 � r � 3 � (20)

...........
1 � 2 1� 2 5 � 4 1
1 � 4 6 � �

1 � � � 1� � 6 � 4
1 � 4 6

...........
r

� 1 (21)

The effect of a knot is to change the quartic coefficients from one side to the other: thus.............
::: ::: :::
::: P ::: 1
::: ::: ::: � 4 1

1 � 4 6 � λ � 4 1
1 � 4 ::: ::: :::

1 ::: Q :::
::: ::: :::

.............
r

�
.............
::: ::: :::
::: P ::: 1
::: ::: ::: � 4 1

1 � 4 6 � 4 1
1 � 4 ::: ::: :::

1 ::: Q :::
::: ::: :::

.............
r

� λ

...........
::: ::: :::
::: P :::
::: ::: ::: 1

1 ::: ::: :::
::: Q :::
::: ::: :::

...........
r � 1

(22)



where Q is a “1 -4 6 -4 1” pentadiagonal extension and “λ” at position k is the rightmost
knot element contained in ∆r. Without the extra contribution from the knot, the quartic
leftward of k, which can be written as

∆s � a4 � s � k � 4 � a3 � s � k � 3 � a2 � s � k � 2 � a1 � s � k � � a0 � (23)

would have extended from s � k before the knot straight through to s - k beyond the
knot, as in the first determinant on the right. The second determinant on the right gives
the increment to the quartic:

λ

...........
::: ::: :::
::: P :::
::: ::: ::: 1

1 ::: ::: :::
::: Q :::
::: ::: :::

...........
r � 1

� λ � detP detQ � detP� detQ
� � (24)

where P� is P without its last row and column, and Q � is Q without its first row and
column. But

detP � ∆k � 1 � a4 � a3 � a2 � a1 � a0
detP� � ∆k � 2 � 16a4 � 8a3 � 4a2 � 2a1 � a0
detQ � 1

12 � r � k � 1 � � r � k � 2 � 2 � r � k � 3 �
detQ � � 1

12 � r � k � � r � k � 1 � 2 � r � k � 2 � (25)

Hence, beyond a knot, the quartic form of ∆r is augmented by the corrective quartic

λ
12 / � r � k � 1 � � r � k � 2 � 2 � r � k � 3 � detP �0� r � k � � r � k � 1 � 2 � r � k � 2 � detP�21 (26)

which defines new coefficients a in terms of the old. Thus the partial determinants ∆r
can be stepped past all n knots in only O � n � operations. After the final knot at k 3 , ∆r will
take its rightmost quartic form

∆r � a 34 � r � k 3 � 4 � a 33 � r � k 3 � 3 � a 32 � r � k 3 � 2 � a 31 � r � k 3 � � a 30 (27)

and direct expansion of more determinants shows that this terminates with the required

det � A � φσσ � 2 ���
...............
::: ::: :::
::: ∆ ::: 1
::: ::: ::: � 4 1

1 � 4 6 � �
1 � � � 1� � 6 � 4 1

1 � 4 5 � 2
1 � 2 1

...............
N

� 12a 34 (28)



For the adjoint factor in (16), delete the jth row and column of the full matrix to get

adj � A � φ σσ � 2 � j j �
...........
::: ::: :::
::: P :::
::: ::: ::: 1

1 ::: ::: :::
::: Q :::
::: ::: :::

...........
N � 1

� detPdetQ � detP� detQ
�

(29)

where P is the entire matrix before j, including all leftward knots, and Q is the entire
matrix after j, including all rightward knots. But

detP � ∆ j � 1 � detP� � ∆ j � 2 (30)

which can be read off from the local quartic which was constructed as part of the
calculation of the overall determinant. A similar calculation, starting from the right-
hand end and stepping backwards, gives ∇r, being the partial determinants calculated
from the right, giving

detQ � ∇ j � 1 � detQ
� � ∇ j � 2 (31)

Thus the variance (i.e. uncertainty) of the interpolant can be evaluated at any point
by looking up the relevant interval and evaluating a couple of pre-calculated quartic
polynomials. (The variance is piecewise 7th order with continuous 3rd derivative.)

Most probable flexibility φ

The singularity det � A �4� 0 means that the curvature prior cannot predict all the data.
In fact, the prior is — by design — invariant to linear transformation y ! y � mx � c. It
does, however, predict all the nonlinear structure that lies orthogonal to the subspace of
straight lines. Accordingly, we first seek the prior predictive “evidence” of the nonlinear
structure only, and this will lead us to φ . To eliminate the two “mx � c” degrees of
freedom, we use second differences and consider curvatures p instead of values y.

Likelihood. The n data are given as uncorrelated normal D 5 N � y � σ 2 � , and we use
U from equation (10) to project out the unwanted degrees of freedom. This gives
UD 5 N � Uy � Uσ 2UT � , written explicitly as

Pr � UD  y ��� Pr � UD  Uy ��� exp � 1
2 � Uy � UD � T � Uσ 2UT � � 1 � Uy � UD �" det � 2π Uσ 2UT � (32)

Meanwhile, the Jacobian volume-expansion factor in the � n � 2 � -dimensional column
space of U is J � " det � UUT � .

Prior. According to the prior, curvature is assigned as p 5 N � 0 � φI � where I is the unit
matrix, so that 6 p � x �	78� 0 and 6 p � x � p � y �	79� φδ � x � y � . Values y are the second-integrals

y � x �,� mx � c � � x

0
� x � ξ � p � ξ � dξ (33)



Again, second-differencing removes m and c. At the knots, we get6	� Uy � k 7,� 0 � 6	� Uy � k � Uy �;:�7�� φVk : (34)

where V is the same matrix as in (10). Hence the curvature prior predicts

Pr � Uy  φ ��� exp ��� 1
2 � Uy � TV � 1 � Uy � � φ �" det � 2πφV � (35)

Selection of φ . The joint distribution integrates to

Pr � UD  φ ��� �
Pr � UD  Uy � Pr � Uy  φ � d � Uy �2� exp ��� 1

2DTUT � Uσ 2UT � φV � � 1UD �" det � 2π � Uσ 2UT � φV �	�
(36)

At small φ this tends towards a constant, whereas at large φ it is O � φ �2< n � 2 =?> 2 � because
the dominating determinant has dimension n � 2. We suppose a power-law prior for
φ which accommodates this behaviour, and gives a sensible “best” estimate φ̂ . The
corresponding ansatz

φ̂ � argmax
φ / φ 1 > 4 Pr � UD  φ � 1 (37)

always gives a sensible result, even when the number of data is only 3 (the minimum
needed to detect curvature). The maximum is found by direct one-dimensional search.

Multiple maxima for φ

Although each individual factor in the evidence for φ changes smoothly and mono-
tonically with φ , the combination need not, so that there may be more than one local
maximum. When this occurs, it means that some part of the data is favouring one degree
of flexibility, while another part is favouring a different value. Usually, this will mean
that something has gone wrong with the data, so that the existence of multiple maxima
can be used to warn of questionable input values.

FIGURE 1. Responses (a on left) to weak outlier, and (b on right) to strong outlier. Error bars are @ 1σ .



This is illustrated by the algorithm’s response to an outlier. Faced with such data,
a human operator would have to decide whether or not to accept it. Much the same
decision is faced within the algorithm, which detects two locally optimum flexibility
values. If the outlier is not too strong, the algorithm stays close to the flexibility it
would have had without the outlier, consistently with all the other data, as in Fig. 1a (an
optimal interpolant with � 1σ uncertainties). Eventually, the outlier becomes too strong
to ignore, and the results (Fig. 1b) accommodate it by switching to higher flexibility.

Evidence Pr A D B
At the optimal φ̂ , the evidence for the differenced data UD is Pr � UD  φ̂ � . By conven-

tion (because φ̂ was not really known in advance), this may be more fairly reported a
power of e lower, as Pr � UD  φ̂ � � e. The Jacobian volume factor then returns this to the
subspace “ C ” of nonlinearity:

Pr � D D ��� " det � UUT � Pr � UD  φ̂ � � e in units of E y-unit F �G< n � 2 = (38)

To complete the evidence, we need to account for the orthogonal subspace “ H ” of
straight lines, which requires the supposedly-prior estimation of two y’s along mx � c.
With linear combinations available of n data with uncertainties σk, it is plausible that two
useful points would have variances around � ∑σ � 2

k � � 1. The maximum likelihood of this,
attained at optimal m and c, would then be � 1 � 2π � ∑σ � 2

k . By convention (because the
optima were not really known in advance), this would be more fairly reported 2 powers
of e lower, as

Pr � D I �,� � 1 � 2πe2 � ∑σ � 2
k in units of E y-unit F � 2 (39)

This treatment is admittedly loose, but it does retain the desired invariance. Finally,

Evidence � Pr � D ��� Pr � D D � Pr � D I � in units of E y-unit F � n (40)

GENERALISATIONS

The curvature prior (2) is a special case of a Gaussian Process (GP), in which the Hessian
matrix A is replaced by (the inverse of) a covariance matrix C, usually with an explicit
model m as well:

Pr � y  φ �	�	�
� ��� exp �J�K� y � m � T C � 1 � y � m � � 2φ �" det � 2πφC � (41)

The covariance is usually assigned some standard shape C � x;x � ��� F �
� x � x � � � w � where
F is normal, Cauchy or other, scaled by a correlation width w. The model, often linear,
is inserted because the GP otherwise fails to be invariant to offsets in origin or slope of y.
Hence the GP usually requires 4 parameters to be set (φ , the linear model, and w).

The flexibility φ is common to both methods. The GP correlation width w has an
analogue in the order of smoothness imposed. The curvature prior uses second-order



smoothness based on y ��� , giving a cubic spline as optimal result. Other orders y < m = could
have been chosen, leading to splines of order 2m � 1. However, there is widespread
agreement that the cubic spline is “best”, lower order being too rough and crude, and
higher order being too spread out. Hence we fix the order m at 2, and avoid the extra
freedom. If the curvature prior were to be generalised, though, it could be done by
altering the curvature-squared “1 -4 6 -4 1” kernel. The linear model is explicit in the
GP. It is implicit in the curvature approach, being un-necessary for the posterior, but
retaining a ghostly presence through its approximated factor in the evidence.

Despite the difficulty of tuning several parameters (and perhaps because generality is
thought to be good), a GP prior seems to be the most popular method for probabilistic
smoothing. An example is the calibration of radiocarbon dates by Buck et al. (2006).
These “INTCAL98” data (Stuiver et al. 1998) are particularly benign, being quite
numerous, equally spaced, and with similar noise throughout.
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(b) Curvature prior
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(a) Gaussian Process

FIGURE 2. Radiocarbon dates vs calendar dates Before Present. Results (a) for Gaussian Process from
Buck et al, and (b) for curvature prior with evidence value. Error bars are drawn at @ 2σ .

As might thus be expected, the inferred smooth curves y � x � look fairly similar for
the GP (Fig. 2a) and for the curvature prior (Fig. 2b). There is a difference at the
edges, because the GP plots the central part of a wider analysis, whereas the curvature
calculation used only the 20 visible data-points to illustrate the extra uncertainty of
extrapolation outside the data. Other than that, the curvature prior gave a noticeably
smoother optimal result, with somewhat smaller uncertainty, and no apparent damage to
the data. It costs a factor of 12 in evidence to relax φ by the factor of 8 needed to loosen
the curvature results to qualitative agreement with the quoted GP.



Unfortunately, it is not possible to give a proper comparison of evidence values, be-
cause GP authors do not compute it. Computing the evidence Pr � D � would admittedly be
expensive, because the matrix C � 1 is unlikely to be narrowly banded like the curvature
Hessian A, so neighbouring data are likely to interfere, making calculation of the huge-
dimensional determinant awkward. Instead, GP parameters are tuned by non-Bayesian
approximations like cross-validation, and the evidence is ignored.

SUMMARY

Probabilistic calibration and interpolation allow closely-spaced data to merge correctly
into a single combination point with average value. This means that extra data will
always be of positive help in constraining the results, which is of course exactly what
should happen. Such methods should also prove somewhat tolerant of occasional errors
in the data, provided these are not too large.

It is no longer necessary to keep calibration points well separated in order to pander
to inferior methodology that ignores noise. Neither is it necessary to insist that all
calibration signals are strong and hence accurate. It may even be as acceptable to
calibrate on a large number of fairly uncertain data as on the traditional small number of
unusually clean signals, so the technical requirements of calibration may well simplify.

The results are accompanied at each point by the corresponding uncertainty. This
gives an easy check on the completeness of estimation. Excessive uncertainty some-
where warns of inadequate data, so that extra data should be sought in the vicinity. In
any case, the curvature-prior algorithm has an in-built diagnostic, warning of incipient
trouble from apparently peculiar data.

The curvature prior only needs one parameter, φ , which can easily be located. The
evidence is available, and shown in the example as a benchmark for other developers.
The procedure reduces to classical cubic spline interpolation if its input and output
uncertainties are switched off. Relative to this, the extra sophistication costs a factor
of 100 or so per data point in the setup phase, and a factor of 3 or 4 per axis point in the
run phase. Finally, the whole algorithm is O � n � fast (50 µsec per point on a home PC).
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