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Abstract. By drawing an analogy between the logarithm of a probability distribution and a
physical potential, it is natural to ask the question, “what is the effect of applying an external force
on model parameters?" In Bayesian inference, parameters are frequently estimated as those that
maximize the posterior, yielding the maximum a posteriori (MAP) solution, which corresponds
to minimizing ϕ = −log(posterior). The uncertainty in the estimated parameters is typically
summarized by the covariance matrix for the posterior distribution,C. I describe a novel approach
to estimating specified elements ofC in which one adds toϕ a term proportional to a force,f , that
is hypothetically applied to the parameters. After minimizing the augmentedϕ, the change in the
parameters is proportional toCf . By selecting the appropriate force, the analyst can estimate the
variance in a quantity of special interest, as well as its covariance relative to other quantities. This
technique allows one to replace a stochastic MCMC calculation with a deterministic optimization
procedure. The usefulness of this technique is demonstrated with a few simple examples, as
well as a more complicated one, namely, the uncertainty in edge localization in a tomographic
reconstruction of an object’s boundary from two projections.
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INTRODUCTION

Bayesian inference for large nonlinear problems is often carried out through numerical
models and calculation[1]. The inference process requires estimates of the parameter
values, â, and their uncertainties. The uncertainties are related to the width of the
posterior and typically characterized in terms of the covariance matrixC. The maximum
a posteriori (MAP) solution is frequently chosen as an estimate of the parameters
because it is easier to find than the posterior mean.

Standard approaches to determiningC include: 1) sensitivity analysis, 2) functional
analysis based on sensitivities[2], and 3) Markov chain Monte Carlo[3]. Each of these
approaches has its advantages and disadvantages, depending on the nature of the prob-
lem, including factors such as the number of parameters, the number of measurements,
and the cost of evaluating the forward model and its sensitivities.

By drawing an analogy between the logarithm of the posterior and a physical poten-
tial, it is natural think about applying an external force to the model parameters to deter-
mine the stiffness of the MAP solution. The resulting algorithm provides a deterministic
way to estimate selected elements of the covariance matrix[4, 5, 6, 7]. The usefulness of
this new technique is demonstrated with examples ranging from simple to complicated.



PHYSICAL ANALOGY

Relationships between statistics and physics often provide a deeper understanding that
can lead to new or improved algorithmic approaches to solving statistics problems. In
statistical physics[8], probability distributions are often written as the exponential of a
physical potential. Thus, in Bayesian analysis, it is natural to draw an analogy between
ϕ(a) =− log(p(a |y)) and a physical potential, wherep(a |y) is the posterior, the vector
a represents then continuous parameters, andy represents them measurements.

The analogy between probabilities and potentials has been used in many applications,
for example, to develop priors on deformable surfaces based on the mechanical proper-
ties of metallic rods[7]. It has been used to develop novel Markov Chain Monte Carlo
(MCMC) algorithms, for example, hybrid Monte Carlo[9], which is based on Hamilto-
nian dynamics.

The dependence of the posterior on the parameters is frequently approximated as a
Gaussian distribution in the neighborhood of the maximum a posteriori (MAP) solution,
â, which minimizesϕ(a). Thus,

ϕ(a) = 1
2

(a− â)T K(a− â)+ϕ0 , (1)

whereK is the curvature matrix forϕ(a) and ϕ0 = ϕ(â). The inverse ofK is the
covariance matrix, defined asC = cov(a) = < (a− â)(a− â)T >.

EXTERNAL FORCE

In the physics analogy, an external force applied to a physical system in equilibrium
will distort it. The displacement is determined by the curvature (or stiffness) matrix
describing the potential around̂a. In the inference problem, the idea is to add toϕ(a) a
potential that is linear ina and find the new minimizera′. Equation (1) becomes

ϕ′(a) = 1
2

(a− â)T K(a− â)− fTa+ϕ0 , (2)

wheref is analagous to a force acting ona. Setting the gradient ofϕ′(a) equal to zero,
we obtain

δa = a′− â = K−1f = Cf , (3)

since the inverse ofK isC. This simple relation suggests that one can determine specific
elements ofC by selecting the appropriate force vectorf and seeing how the MAP
parameters change with reoptimization. Iff has only one nonzero component,fj, then
Eq. (3) becomesδaj = σ2

aj
fj.

Inserting Eq. (3) into Eq. (1), the functional dependence of the change in the posterior
is

δϕ = 1
2

(Cf)T K(Cf) = 1
2
fTCf , (4)

becauseK−1 = C andC is symmetric. Thus, the change in the posterior is quadratically
related to the magnitude of the applied force.



Derived quantities

The above technique may be used to estimate the uncertainty in quantities that are
derived from the fitted parameters. Suppose the quantity of interestz is a function of the
parametersa. To first order, perturbations inz(a) are given by

δz = sT
z δa , (5)

wheresz is the sensitivity vector ofz with respect toa, si = ∂z
∂ai

. The variance inz is

var(z) =
〈|δz|2〉 =

〈
sT
z δaδaTsz

〉
= sT

z Csz . (6)

Thus, the appropriate force ona to probez is f z = k sz, wherek is a scaling parameter
to adjust the magnitude of the force. Then,δz = Czf z = σ2

zk, which has the same form
as Eq. (3). Therefore,

σ2
z =

δz

k
, (7)

which can be used to estimateσz from theδz produced by the applied force.
From Eq. (4), the dependence of the posterior onf is

δϕ = 1
2
k2σ2

z , (8)

or

σz =
δz√
2δϕ

. (9)

This relation provides another way to estimate the standard error inz. It is perhaps more
reliable than Eq. (7) because it doesn’t explicitely involve the magnitude of the force.

EXAMPLES

Fitting a straight line

The first example is very simple; fitting a straight line to measurements in one-
dimension. The model for the measurements isy = a+ bx, wherea is the intercept of
the line with they axis andb is the slope of the line. The parameter vectora consists of
the parametersa andb. Figure 1a shows 10 data points obtained fora = 0.5 andb = 0.5,
with additive fluctuations iny produced by drawing random numbers from a Gaussian
distribution with zero mean and a standard deviation of 0.2.

Consider now the analysis of these data. Assuming the uncertainties in the measure-
ments are independent and Gaussian distributed, as well as a flat prior,ϕ for this problem
is

ϕ(a) = 1
2

χ2 = 1
2

∑
i

[yi−y(xi;a)]2

σ2
i

, (10)
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FIGURE 1. (a, left) Plot of 10 data points with their standard error bars, and the straight line that
minimizesϕ. (b, right) Applying an upward force to the line atx = 0 and reoptimizingϕ′, lifts the line
there. However, the data pull the left side of the line down, resulting in a negative correlation between the
intercept,a, and the slope,b.

−30 −20 −10 0 10 20 30

−0.4

−0.2

0

0.2

0.4

0.6

Force (upward at x = 0)

δa
, δ

b

δa

δb

−30 −20 −10 0 10 20 30
0

2

4

6

8

Force (applied upward at x = 0)

δφ

FIGURE 2. (a, left) Plot of the displacements in the two parameters of the straight line in response to an
upward force applied to the line atx = 0. (b, right) Plot of the change inϕ as a function of the magnitude
of the applied force. As explained in the text, the functional dependences of either of these plots may be
used to quantitatively estimate properties of the covariance matrix.

whereyi is the measurement at the positionxi, andσi is its standard error. The line
through the data in Fig. 1a represents the MAP solution, that is, it minimizesϕ.

Suppose that we apply an upward force to the line atx = 0. This force is applied
only to the parametera. The new position of the line obtained by minimizing Eq. (2) is
shown in Fig. 1b. The intercepta is increased, while the slope of the lineb is decreased to
maintain a good fit to the data. This observed anticorrelation betweena andb is a direct
indication of the correlation between the uncertainties in these variables expressed by
the covariance matrix.

Quantitative estimates of elements ofC may be obtained from the plot in Fig. 2a,
which shows that the changes ina andb from their original values are proportional to
the applied vertical force. The slope ofδa relative tof , by Eq. (7) isCaa = σ2

a = (0.127)2.
The slope ofδb relative tof is Cab = −4.84× 10−3. The diagonal termCbb is not



determined because the force chosen does not directly probe that element ofC.
These results may be checked through a conventional least-squares fitting

analysis[10]. When the number of parameters is not too large and the function cal-
culations are quick, finite differences may be used to evaluate the Jacobian matrix
(derivatives of all outputs with respect to all parameters). The curvature matrixK in
Eq. (1) can be approximated as the outer product of the Jacobian with itself. The inverse
of K is C.

The conventional analysis confirms that results quoted above.

Spectral fitting

A more complicated example consists of fitting the data shown in Fig. 3. These data
are obtained by simulation, assuming the spectrum consists of a single Gaussian peak
added to a quadratic background. There are six parameters: the position, amplitude, and
rms width of the Gaussian,x0, a, andw, respectively, and three parameters to describe
the quadratic background. For this example,x0 = 3, a = 2, andw = 0.2. Random noise
is added to the data, assumingσy = 0.2. Figure 3 shows the spectrum obtained by
minimizingϕ(a) = 1

2
χ2 with respect to the six parameters.

Let us assume that we are principally interested in the area under the Gaussian
peak. The area is proportional to the product of its amplitude and width:A =

√
2πaw.

Following the discussion in the section on Derived Quantities, the force to apply toa and
w should be proportional to the derivatives ofA with respect to the these parameters:
∂A
∂a

=
√

2πw and ∂A
∂w

=
√

2πa. Examples of the result of applying large positive and
negative forces to the area are shown in Fig. 4. Figure 5 shows the results of varying
the magnitude of the applied force. For small values of the force, the change inA
depends approximately linearly on the force. However, for this nonlinear model, the
linear dependence is expected to fail at some point.

From Eq. (9), the quadratic dependence ofδϕ on δA should be δϕ = 1
2

[
δA
σA

]2

. For

the smallest forces applied, this yields the estimatesσA = 0.098, for a negative force and
0.104, for a positive force.

The results of a conventional least-squares analysis areχ2
min = 34.32 with p =

0.852; a = 1.948, σa = 0.149, w = 0.1759, σw = 0.0165, and a correlation coeffi-
cient raw = −0.427. From these, the area isA = 0.859, and its standard error is
σA =

√
2π [w2σ2

a +a2σ2
w− raw awσaσw]

1/2
= 0.093, in reasonable agreement with the

above result, considering the slightly nonquadractic behavior of the curve.

Tomographic reconstruction

The foregoing examples were simple enough to be handled by standard least-squares
fitting routines. However, as the number of variables increases, let us say beyond several
hundred, and as the cost of function evaluation increases, standard fitting codes fail. The
general approach that has developed avoids full-blown matrices; the MAP estimates are
found by numerical optimization of the calculatedϕ. The difficult part is estimating
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FIGURE 3. Plot of 50 data points with their standard error bars representing a simple spectrum, and the
optimized curve corresponding to a Gaussian peak on a quadratic background.
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FIGURE 4. (a, left) Plot of the reoptimized curve under the influence of an external force applied to the
parameters to increase the area under the Gaussian peak. (b, right) Similar to a, but the external force is
applied to the parameters to decrease the area under the peak. The dashed lines are the unperturbed curve.
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FIGURE 5. (a, left) Plot of the change in the area under the peakA caused by a force applied toA. (b,
right) Plot of the change inϕ as a function of the change in the area produced by the applied force.



FIGURE 6. (a, left) Display of the 95% Bayesian credible interval for the boundary of an object re-
constructed from two projections obtained using MCMC and the Bayes Inference Engine (from Ref. [7]).
The white region corresponds to roughly a plus or minus two-standard-deviation uncertainty envelop for
the edge of the object. The boundary of the original object in this test problem is shown as a dashed line.
(b, right) The dashed (yellow) line shows the effect of pushing inward on the MAP-estimated boundary,
shown as the solid (red) line. The displacement of the boundary corresponds to the covariance matrix for
the boundary location, relative to the position of the applied force, indicated by the white rectangle.

the uncertainties in the parameters. For that purpose, Markov Chain Monte Carlo[11]
(MCMC) is often employed in Bayesian calculations. Indeed, it is very adaptable and
handles virtually every situation. However, MCMC tends to be relatively inefficient and
time consuming under the conditions described.

The Bayes Inference Engine[12] (BIE) was developed at the Los Alamos National
Laboratory to provide an effective means for tomographically reconstructing objects
from radiographs. An example of the use of the BIE was presented in Ref. [7], which
demonstrated the reconstruction of an object from just two orthogonal projections. The
object was modeled in terms of a deformable boundary with a known constant interior
density. The BIE optimized the simple boundary to match the two noisy projections
by means of adjoint differentiation, which efficiently provides the derivatives of the
optimization function with respect to the 50 vertices of the polygonal boundary in the
same amount of time as one forward calculation. Thus, a gradient-based optimization
algorithm, BFGS[13], can be used to accelerate convergence. In the above article,
MCMC, in the form of the Metropolis algorithm[3], was used to assess the uncertainties
in the edge location. The end result of that example was the 95% Bayesian credible
interval for the boundary of the object shown in Fig. 6a.

In this situation, the concept of probing the covariance matrix is ideally suited to
determining the uncertainty in the edge location of the reconstruction at a particular
position. Figure 6b shows the result of applying pressure (force over the finite width of
the white rectangle) to the boundary. The solid (red) line represents the MAP estimated
boundary. The dashed (yellow) line shows the new position of the boundary, after
minimizing the augmented posterior (2).

The deflection of the boundary over the width of the rectangle may be used to



quantitatively estimate the standard error in the estimated edge location at that spot.
Furthermore, the deflections elsewhere are proportional to the covariance between those
edge locations and the probed position. The main effects in these observed correlations
are easy to understand, given that the measurements on which the reconstruction are
based consist in horizontal and vertical projections of the object’s density distribution.
The edge locations opposite to the pressure point, horizontally and vertically, move
outwards to maintain the projection values. The inward movement of the boundary in the
upper right-hand position of the object is similarly in response to the latter two motions.

SUMMARY

I have presented a novel method for numerically estimating elements of the covariance
matrix. The method relies on optimization of the minus-log-posterior, and so replaces
standard stochastic methods with a deterministic one.

The method consists of the following steps:
1. Find the model parametersâ that minimizeϕ (minus-log-posterior).
2. Decide on the quantity of interestz.
3. Calculate the sensitity ofz with respect toa: sz = ∂z

∂a .
4. Find the parameters that minimizeϕ′ = ϕ− ksT

z a. The factork should be approxi-
matelyσ−1

z . If δϕ, is much bigger than 0.5, reducek and try again.
5. Estimate the standard error inz with either:σ2

z = δz
k

or σz = δz√
2δϕ

.
Furthermore, the covariance betweenz and other quantities may be estimated using
Eq. (3).

The described method may be most useful when: a) one’s interest is in the uncertainty
in one or a few parameters or derived quantities, out of many parameters; b) the full
covariance matrix is not known (nor desired); c) the posterior can be well approximated
by Gaussian distribution in parameters; and d) minimization ofϕ andϕ′ can be done
efficiently. The latter condition seems to require that the gradient calculation can be
done efficiently, for example, through adjoint differentiation of the forward simulation
code[14]. Some potential uses of the method include estimation of the signal-to-noise
ratio in a region of a tomographic reconstruction[15, 16] and estimating the uncertainty
in the scalar output of a simulation code, for example, the criticality of an assembly of
fissile material calculated with a neutron-transport code[17].

The method may also be useful for exploring and quantifying non-Gaussian poste-
rior distributions, including situations with inequality constraints. For example, non-
negativity constraints in an inverse problem may result in some parameters being pushed
to the limit. The gradient at the MAP solution may not be zero because of the constraint.
Using a force to probe the posterior can quantify the strength of the constraint. Likeli-
hoods with long-tails are often used to handle outliers[18]. Such likelihoods can lead to
nonGaussian posterior distributions. The present method may be used to explore such
nonGaussian distributions, even though there may be no interpretation in terms of covari-
ance. The method might be useful to explore probabilistic correlations in self-optimizing
natural systems, such as populations, bacteria, and traffic.



ACKNOWLEDGMENTS

Greg Cunningham played a major role in developing the original technique and imple-
menting it in the Bayes Inference Engine. I would like to thank Rainer Fischer and Paul
Goggans for useful discussions, and Richard Silver and Lawrence Pratt for answering
statistical-physics questions. This work was done under U.S. DOE Contract DE-AC52-
06NA25396.

REFERENCES

1. D. S. Sivia and J. Skilling,Data Analysis - A Bayesian Tutorial: Second Edition, Clarendon, Oxford,
2006.

2. T. J. Santner, B. J. Williams, and W. I. Notz,The Design and Analysis of Computer Experiments,
Springer, New York, 2003.

3. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter,Markov Chain Monte Carlo in Practice, Chap-
man and Hall, London, 1996.

4. K. M. Hanson and G. S. Cunningham, “Exploring the reliability of Bayesian reconstructions,” in
Image Processing, M. H. Loew, ed.,Proc. SPIE2434, pp. 416–423, 1995.

5. K. M. Hanson and G. S. Cunningham, “The hard truth,” inMaximum Entropy and Bayesian Methods,
J. Skilling and S. Sibisi, eds., pp. 157–164, Kluwer Academic, Dordrecht, 1996.

6. G. S. Cunningham and K. M. Hanson, “Uncertainty estimation for Bayesian reconstructions from
low-count SPECT data,” inConf. Rec. IEEE Nucl. Sci. Symp. and Med. Imaging Conf., IEEE,
Piscataway, 1996.

7. K. M. Hanson, G. S. Cunningham, and R. J. McKee, “Uncertainty assessment for reconstructions
based on deformable models,”Int. J. Imaging Systems and Technology8, pp. 506–512, 1997.

8. L. E. Reich,A Modern Course in Statistical Physics - Second Edition, Wiley, New York, 1998.
9. S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid Monte Carlo,”Phys. Lett. B195,

pp. 216–222, 1987.
10. P. R. Bevington and D. K. Robinson,Data Reduction and Error Analysis for the Physical Sciences,

McGraw-Hill, Boston, 1992.
11. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin,Bayesian Data Analysis, Chapman & Hall,

London, 1995.
12. K. M. Hanson and G. S. Cunningham, “Operation of the Bayes Inference Engine,” inMaximum

Entropy and Bayesian Methods, W. von der Linden et al., ed., pp. 309–318, Kluwer Academic,
Dordrecht, 1999.

13. P. E. Gill, W. Murray, and F. H. Wright,Practical Optimization, Academic, New York, 1981.
14. A. Griewank,Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation,

SIAM, Philadelphia, 2000.
15. J. Qi and R. H. Huesman, “Theoretical study of penalized-likelihood image reconstruction for region

of interest quantification,”IEEE Trans. Med. Imaging25, pp. 640–648, 2006.
16. K. M. Hanson and K. J. Myers, “Rayleigh task performance as a method to evaluate image recon-

struction algorithms,” inMaximum Entropy and Bayesian Methods, W. T. Grandy and L. H. Schick,
eds., pp. 303–312, Kluwer Academic, Dordrecht, 1991.

17. T. Kawano, K. M. Hanson, S. C. Frankle, P. Talou, M. B. Chadwick, and R. C. Little, “Uncertainty
quantification for applications of239Pu fission cross sections using a Monte Carlo technique,”Nucl.
Sci. Engr.153, pp. 11–7, 2006.

18. K. M. Hanson, “Bayesian analysis of inconsistent measurements of neutron cross sections,” in
Bayesian Inference and Maximum Entropy Methods in Science and Engineering, K. H. Knuth et
al., ed.,AIP Conf. Proc.803, pp. 431–439, AIP, Melville, 2005.


