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Abstract. Already in 1998 we presented on a MaxEnt conference a Bayesian model comparison
for the confinement scaling of fusion devices [1]. The reasonto visit this field again is an over the
years enlarged data basis facilitating new physical insights. We compare up to ten physical models
on the basis of the old (low-β) data of the 1998 approach and newly acquired high-β data. This
work serves as an example where the prior odds cannot be set constant (as would be the normal
procedure) but has to be furnished with physics information.

INTRODUCTION

In the work of 1998 [1] we examined confinement data of one of the fusion devices in
Garching, the W7-AS stellarator. Due to the machine conditions at that time the data
was mainly of collisional low-β character (whereβ is the ratio of the kinetic pressure
of the plasma and the magnetic field pressure exerted by the toroidal magnetic field).
The type of the data was successfully identified by a model comparison from a choice
of four models distinguishing between collisionless/collisional and low-/high-β plasma.
Furthermore, the method was capable of predicting the outcome of single variable scans
not contained in the data base. Since then, several experimental campaigns in W7-AS
have explored the high-β regime. It is expected that the interpretation of these new data
requires a different description and hence a new model is necessary as compared to the
low-β regime.

The physical models emerge from dimensional constraints onthe exponents of a
scaling function over the confinement energyW . These dimensional constraints are
related, e.g., to the influence of collisions among the plasma particles, charge neutrality
or β. As operation parameters entering the scaling function serve the electron densityn,
toroidal magnetic fieldB, absorbed powerP and the effective minor radiusa

W theo ∝ nαnBαBP αP aαa . (1)

The invariance principle of Connor and Taylor [2] states that if the confinement of
plasma is described by the equations of some particular plasma model then a confine-
ment time calculated from that model must reflect any invariance properties of those
equations, no matter how complex the calculation. Thus by examining the linear trans-
formation behavior of such basic equations like the Fokker-Planck equation or Maxwell
equations one can derive constraints on the above scaling exponents. For instance, tak-



TABLE 1. Connor-Taylor models. The last column shows the respectivenum-
ber of variables in the model (dof: degree of freedom).

CT-modelMj Abbr. ξ1 ξ2 ξ3 ξ4 Ndof

Collisionless low-β L x 0 0 0 1
Collisional low-β CL x y 0 0 2
Collisionless high-β H x 0 z 0 2
Collisional high-β CH x y z 0 3
Non-neutral collisionless low-β NL x 0 0 w 2
Non-neutral collisional low-β NCL x y 0 w 3
Non-neutral collisionless high-β NH x 0 z w 3
Non-neutral collisional high-β NCH x y z w 4
Ideal fluid FI x 0 1-x/2 0 1
Resistive fluid FR x y 1-x/2+y 0 2

ing the Fokker-Planck equation into account without a term reflecting collisions among
the plasma particles and without obedience to Maxwell equations, the simplest Connor-
Taylor (CT) model, i.e. collisionless low-β, evolves. By gradually switching on a col-
lision term, Ampere’s law (for high-β) and/or Poisson’s equation (for non-neutrality) a
variety of eight models is obtained. Additionally, we examine two fluid models described
by continuity, momentum and energy equation with a choice ofignoring dissipative ef-
fects which leads to either ideal or resistive fluid model. The respective constraints on
the scaling exponents yield the following scaling law ansatz where the assignment to the
specific model is shown in table 1.
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c is the proportionality constant andf(ξ) comprises the terms with the scaling exponents
ξ = (ξ1, ..., ξNdof

). Note that the numberNdof of the latter varies between one and four,
e.g. in the simplest case of the collisionless low-β model there is only one scaling
exponentξ1 = x.

One of the achievements of the 1998 approach was to overcome ashortcoming of
common scaling laws, i.e. the failure to mimic the saturation of confinement withn or
P . This follows from exploiting the invariance principle onestep further and to scale not
over a single term but over a sum of scaling termsf(ξk) with expansion coefficientsck.

W theo =
E
∑

k=1

ckf (ξk) . (4)

Since a sum is a linear operation the transformation properties of Eq. (3) are conserved.
Which expansion orderE is necessary to describe the data best is in the realm of
Occam’s razor self-consistently contained in Bayesian model comparison.



MODEL COMPARISON

A thorough discussion of the uncertainties of the measured quantities is of major im-
portance for the identification of the most appropriate model. This was already part of
the work in 1998 and pursued on last years conference [3]. As we are confident that the
qualitative description has come to an end, we would still like to introduce an overall
correction factorω in order to allow for deviations on the quantitative level. For a set of
N data this leads to the following likelihood function
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The uncertaintyσ of the energy contentW exp contains the direct distributions from the
diamagnetic measurement as well as indirect contributionsfrom the finite precision in
the input variables (n,B,P,a).

We are looking for the probability of a modelMj given the dataW exp. The odds ratio
reads

p(Mj |W
exp,σ, I)

p(Mk|W
exp,σ, I)

=
p(Mj |σ, I)

p(Mk|σ, I)

p(W exp|Mj ,σ, I)

p(W exp|Mk,σ, I)
. (6)

While normally the prior odds (first ratio on the r.h.s.) is set constant for being ignorant
to the preference of a model prior to data, doing so we will face this time a situation
where we have reason to change this procedure (s. results section). For the second ratio,
the so-called Bayes factor, we have to calculate the global likelihood. This is given by a
discrete sum over all expansion orders of Eq. (4)

p(W exp|Mj ,σ, I) =
∑

E

p(E|Mj ,σ, I)p(W exp|E,Mj,σ, I) , (7)

wherep(E|Mj,σ, I) is set constant because a priori no expansion order is favored.
p(W exp|E,Mj ,σ, I) is obtained by marginalizing overc, ω and the scaling exponents
summarized by a vectorξ with E×Ndof elements

p(W exp|E,Mj ,σ, I) =
∫

p(W exp|ω,c,ξ,E,Mj ,σ, I)

· p(ω,ξ,c|E,Mj,σ, I) µ(ω,ξ,c) dω dc dξ , (8)

featuring the Riemannian metricµ(ω,ξ,c) =
√

det [g] and|g| as the determinant of the
Fisher information matrix [4]. The invariant measure for expansion orderE and model
with Ndof variables is
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C is anE ×E matrix with the expansion coefficientsck of Eq. (4) on its diagonal.̃∆
andU stem from the singular value decomposition of theN ×E matrix F (with the
E vectorsf (xk) as columns). The matrixL(i) is anN ×N diagonal matrix consisting
of the logarithms of thei-th CT-term in parentheses in (2),L(i) = diag

(

lnS(i)
ν

)

. The
column (row) element of the complete(E ·Ndof )×(E ·Ndof ) matrix in the curly brackets
in (10) is obtained by running over all possiblei (i′) for eachk (k′) of the expansion in
(4).

In the determination of the prior function we choose forξ a flat prior and Jeffreys’
prior for ω with lower and upper boundaries motivated by information from physics.
For the coefficientsc let us have a look at theχ2-term in the likelihood function (5). Its
minimum value is

χ2
min = W̃ exp

T
W̃ exp−cML

T F̃
T
F̃cML . (11)

The tilde denotes that thei-th vector entry is divided by its respective uncertaintyσi and
cML is the usual maximum likelihood solution. Since Eq. (11) cannot drop below zero
we have

W̃ exp
T
W̃ exp ≥ cML

T F̃
T
F̃cML . (12)

While (12) is valid forc = cML only, we can extend its form to an estimation for
arbitrary coefficientsc. For those the right hand side of (12) has to allow for the
uncertainties in the data. In order to establish a new upper limit we addΣTΣ to the
left hand side of (12)

W̃ exp
T
W̃ exp +ΣTΣ ≥ cT F̃

T
F̃c . (13)

A conservative approximation ofΣ is to assume that the deviation of the expansion from
the measured data shall not be larger than the data value itself, which meansΣ = W̃ exp

and results in
2W̃ exp

T
W̃ exp ≥ cT F̃

T
F̃c . (14)

We name this Bessel prior because (12) is nothing but the Bessel inequality ifF̃ would
be a complete orthonormal basis. This just imposes an upper boundary on the choice of
possible coefficients. We write the Bessel prior as aθ-function which allows only those
values forc which fulfill (14)

p(c|ξ,E,Mj ,σ, I) ∝ θ
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After stating the complete prior function, the next task is the evaluation of its normal-
ization constantZ given by

Z =
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where the integration overξ has to be postponed to the final integration of the posterior
function. For the contribution from theω integration we employ the conservative approx-
imation that our estimation of the experimental error is correct in quantitative respect at
least by a factor of two. Since the error enters the problem ina quadratic manner this
means that the overall correction factor is something betweenω0 = 1/22 andω1 = 22.
Inserting these values in the integration limits of (16) results in

Zω =
2ENdof+1

ENdof

(

1−4−ENdof

)

. (17)

The integral inc covers−∞ to ∞ and the upper limit established by the Bessel prior

becomes effective. The termcT F̃
T
F̃c in theθ function constitutes an ellipsoidal sphere

in phase space. In order to calculate the volume of this hyper-sphere we perform a

transformation for the principle axes and require|F̃
T
F̃| ≈ |∆̃|2. With this approximation
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Knowing the normalization of the prior function we marginalize overc andω in (8) and
obtain eventually
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with Ξ̂(ξ) = Ξ(ξ)/
∫

dξ′ Ξ(ξ′). CML is still theE×E diagonal matrix from (9) but now
with the maximum likelihood valuescML as elements.

The final integration overξ is performed with Markov chain Monte Carlo techniques
employing the thermodynamic integration scheme [5].
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FIGURE 1. W7-AS confinement data as a function ofβ and collisionalityν∗: low-β subset (circle),
high-β subset (squares), additional data in ISCDB (plus signs).

QUALIFYING DATA SUBSETS

Fig. 1 depicts the distribution of a total of 972 entries of W7-AS to the International
Stellarator Confinement Data Base (ISCDB) [6] as a function of β and collisionality1

ν∗. From these data covering different physical regimes subsets with model specific
properties have to be selected.

The data set of the previous work (full circles in Fig. 1) was well located in the low-
β regime (β <

∼1%) to serve as a test example for a choice of low- and high-β models.
Moreover, for most of these data it was expected that collisions among particles play a
role. Additional care has to be taken as the plasma energyW shows a variation of a factor
up to two as a function of the rotational transform̄ι [7]. This necessitates identifying
regions inῑ with small changes in the absolute value ofW (a variation of 10% of the
total value was considered as tolerable). For the low-β case, W7-AS shots with̄ι between
0.33 and 0.35 were chosen resulting inN = 153 data.

In order to test the procedure in the high-β range as well, the shot files of W7-AS were
subjected to a high-β survey. The search criteria were to consider certain magnetic field
and plasma current conditions of shot files in high-β campaigns. Although the influence
of ῑ is expected to be less for the high-β case, a range for̄ι between 0.45 and 0.49

1 The collisionalityν∗ is a dimensionless number to quantify the number of collisions among plasma
particles. Its relative size characterizes different regimes where collisions become important for the
confinement properties. In the present example of the W7-AS stellarator this is the case for low (ν∗<

∼20)
and high (ν∗>

∼200) values, but lesser for intermediately valuedν∗.
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FIGURE 2. Bar chart of the model probabilities for the (a) low-β and (b) high-β data set. The unphys-
ical non-neutral models are shown in gray.

was taken containing N=96 high-β data (open squares in Fig. 1) with still a moderate
variation ofW according to [7].

RESULTS

The results of the model comparisons are shown in Fig. 2. For the low-β data the
outcome of the first four models is a restatement of the work of1998 with the colli-
sional low-β model as the most probable one. However, with the introduction of non-
neutrality, i.e. taking into account the transformation invariances of Poisson’s equation
with a charge density not equal to zero, surprisingly the non-neutral collisionless low-
β model wins. While for length scales below the so-called Debye length the explicit
charge distribution of ions and electrons has to be taken into account, above that limit
a plasma appears from the outside as being charge neutral. For the machine settings the
experiments were performed at it is not expected that phenomena occur which harm the
charge neutrality to an extent large enough to show up in global confinement proper-
ties. The explanation to this astonishing result can be found by having a closer look at
the CT-terms assigned to the specific models. Both models deviate only by exchanging
the collisionality-terma3B4/n with the non-neutrality-termB2/n. However, the low-β
data hardly vary ina3B4 andB2 making differences between both models blind to model
comparison. The magnetic field has only two settings at 2.5T and 1.25T with minor vari-
ations around these values, while the minor radius has most of its entries around 12cm
and 17.5cm with a few measurements in between. The same happens for the high-β case.
Here the (unphysical) non-neutral collisionless high-β model challenges the collisional
high-β one. With magnetic fields close to 1.2T and a strong accumulation of the minor
radius around 11.7cm again the data base does not offer the possibility to distinguish
between both models. These findings are supported by the linear correlation coefficients
being significant for the responsible two terms (see table 2).



TABLE 2. Linear correlation coefficient of the CT-
terms in Eq. (3) for low- and high-β data.

Data
(

a3B4

n
, 1

na2

) (

a3B4

n
, B2

n

) (

1

na2 , B2

n

)

low-β -0.11 0.84 0.38
high-β -0.57 0.88 0.15

CONCLUSION

Taking advantage of the invariance principle in order to generate testable models, one has
to be cautious that the data base possesses enough variability in the model determining
quantities. However, in Bayesian data analysis we have the tool to correct an implausible
outcome, i.e. the prior odds ratio. Since the assumption of aplasma without charge
neutrality is unphysical the prior odds ratio can be adjusted accordingly. But what is
unphysical in numbers? Giving a chance of 1 in 5 does already suffice to obtain the
correct result in the above case. Probabilities likep(Mk|unphysical) = 10−3 or lower
may be more justified from an expert view.

Apart from this caveat Bayesian model comparison does againdetect the correct
model (collisional high-β) for a newly acquired high-β data set in the collisional regime.
Since the models simply emerge out of an invariance principle regarding the linear trans-
formation behavior of basic physics equation, the procedure seems to be a promising tool
whenever the complexity of a problem denies a detailed description.
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