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Entropic Inference for Assigning Probabilities:
Some Difficulties in Axiomatics and Applications
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Abstract. The importance of entropic notions for assigning probabilities is highlighted. We review
the main interpretations and uses of entropy functionals and methods. We also examine the justifica-
tions offered to support them, in particular the attempts to axiomatically derive a unique expression
for entropic procedures in compliance with rationality and consistency requirements of a canon of
plausible inference. The main difficulties arising when trying to apply these methods are pointed
out. Ultimately they manifest the incompleteness of inference theory.
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INTRODUCTION

The question12345678910111213141516171819 how to assign probabilities is inescapable in or-
der to develop a quantitative theory of plausible inference for reasoning about the plausi-
bilities or certainty degrees of conjectures, on the only basis of partial evidential knowl-
edge insufficient to determine their truth. Yet this numerical assessment is an extraordi-
narily difficult and controversial problem, especially when available evidences are lim-
ited and observational data scarce. Modernly, it was conceived as a methodological issue,
pertaining to the application of probability theory, and hence left aside from theoretical
considerations. Compared to axiomatic studies of probability, focused on the relation
between individual inferences and the derivation of rules to combine probabilities, for-
mal approaches for obtaining procedures to solve such inferences have received little
attention. However, along the past century it has regained acceptance the idea that as-
signing probabilities is not a matter of special purpose techniques of dubious soundness,
but constitutes a fundamental epistemological problem, which should be supported on
rational grounds [41]. Besides a greater emphasis in logic, a novel perspective has come
up, namely that plausible inference is holistic and refers to all possible conjectures in a
language, so the assignment of probabilities corresponds to the selection of distributions.

Among the most attractive procedures for this task we find entropic methods, charac-
terized by the selection of the distribution which extremizes an entropy functional sub-
ject to a set of constraints representing a particular kind of evidential knowledge, more
specifically high-order information about probabilities, also called testable information,
which usually takes the form of restrictions setting values to distribution moments.

Several milestones can be pointed out in the way to an epistemic conception of en-
tropic inference [40]. First, the introduction of technical notions to globally describe and
quantify the state of knowledge in a situation of uncertainty regarding the conjectures,
viz. Fisher’s information in statistics (1925); Shannon [37] and Wiener’s information-
theoretic entropies, with precursors in statistical physics and communications analysis;
Good’s [15] expected weight of evidence, preceded by the investigations towards an ex-
tended logic of Peirce (1878), Keynes [32] and Jeffreys [27], and by the cryptographic
applications of Turing during World War II; the semantic definition of information and
entropy of Carnap and Bar-Hillel [6][5]; and the generalized distances between proba-
bility distributions devised by Mahalanobis (1936), Bhattacharya (1943), Jeffreys (1946)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19



and Kullback [34], which are the basis for information gain measures.
Secondly, the acknowledgement of the complementarity of these entropic notions

with probability. This is specially clear in the works of Good, Ingarden, Urbanik and
Domotor, who, starting from an analysis of the information concept alone, without
previous recourse to probabilities, established a structural link between probabilities
and entropy, allowing to define the latter in terms of the former [15][21][11]. From
another perspective, Cox speculated that the coupling of these concepts indicates a
duality between the logic of assertions and a logic of questions [8] (see [33]).

And in the third place, recognition by Jaynes [22], Ingarden [20], Good [16] and Kull-
back [34] that this complementarity of entropy and probability can be employed to con-
struct procedures to assign unknown probabilities starting from the processing of known
information. Notwithstanding the practical approaches of Gibbs and Shannon, the first
explicit proposal of a general scientific inference rule based on entropic notions was due
to Jaynes, who enunciated the Principle of Maximum Entropy (MaxEnt), prescribing the
selection of the distribution which maximizes Shannon’s absolute entropy

HShannon(Q) =−
n∑

i=1

qi logqi, (1)

subject to linear constraints on the distribution Q = (q1, ..., qn).
Independently, Kullback proposed a rule for inference when a distribution P =

(p1, ...,pn) is considered in addition to the constraints. This rule, known as the Principle
of Minimum Cross Entropy (MinxEnt), picks as solution the distribution which mini-
mizes, taking into account the constraints representing the available testable knowledge,
the Kullback-Leibler (KL) relative entropy functional

DKL(Q ‖ P ) =
n∑

i=1

qi log
qi

pi

. (2)

Later on, generalized formulations have been advocated [1][36][29][9], stipulating
the extremization of extended entropies, as follows:

Q̃ = argmin
Eq

Dgen(Q ‖ P ), (3)

where Eq denotes a feasible space of distributions Q satisfying a set of linear constraints,
and Dgen(Q ‖ P ) a generalized relative entropy functional. Common choices are

DCsiszár(Q ‖ P ) =
n∑

i=1

piφ

(
qi

pi

)
, (4)

with φ convex and twice differentiable, such that φ(1) = 0, which comprise the family

Dα
Rényi(Q ‖ P ) =

1

α−1
log

n∑

i=1

qα
i p1−α

i ,with α > 0,α 6= 1, (5)

of additive Rényi entropies, the KL measure corresponding to the limiting case α→ 1.



INTERPRETATION OF ENTROPY MEASURES AND METHODS

Entropy functionals have been interpreted in many ways, for instance as measures of
disorder, randomnesss, surprise, freedom of choice, diversity and distinguishability.
Here we will be concerned only with their intepretation in inference theory.

Shannon entropy (1) measures the amount of global uncertainty expressed by a prob-
ability distribution representing a state of knowledge about the conjectures in a language
system, given an evidence. In other words, it quantifies the missing information which
remains to be learned to reach certainty, that is, the expected information that an even-
tual confirmation of one conjecture would provide. It may also be regarded as a measure
of uniformity, since a distribution representing greater uncertainty is more spread out.

Several interpretations have been put forward for KL entropy (2). Originally, Good
proposed it as a measure of the expected weight of evidence provided by a new possible
observational evidence x, in favour of a hypothesis H1 implying a probability distribu-
tion Q, against another hypothesis H2 implying P . On the other hand, Kullback regarded
it as a natural directed divergence from a probability distribution Q to a fixed distribution
P adopted as an estimate, and interpreted it as the mean information per possible sam-
ple of observations for discriminating in favour of a hypothesis H1 implying Q against
a hypothesis H2 implying P , when H1 is assumed to be true. Thus both authors were
implicitly considering the functional (2) as DKL(Q(x |H1) ‖ P (x |H2)), having as ar-
guments distributions conditioned on hypothesis H1 and H2, respectively. (Note that no
reference is made in the former interpretations to an updating operation from P to Q.)

Next, Rényi [36] introduced the idea that relative entropy measured the expected
information gain to be obtained if distribution Q is used instead of P . But only with
Hobson [19] it started to be viewed as an information gain associated with the passing
from an initial P to a final Q. In particular, when constraints on Q are taken into account,
KL entropy can be adopted as quantifying the information provided by these constraints
to update P into Q, an interpretation which has become a standard after [28][38].

The previous interpretations have led to various uses of entropic procedures. First, the
MaxEnt method, characterized by the maximization of Shannon entropy (1), has been
regarded as a procedure for direct assignment of probabilities [29][14], by selecting,
once the constraints expressing the relevant testable information are taken into account,
the distribution Q̃ which maximizes our global uncertainty about conjectures. More
exactly, Jaynes [26] defended its use within the Bayesian probability framework for
choosing prior distributions for parameters, as a generalization of the classical principle
of insufficient reason when high-order information is at hand.

Kullback and Good [34][16] utilized MinxEnt for three purposes: the indirect assign-
ment of probabilities Q̃ from the knowledge of a default distribution P and a set of
constraints; the classification of samples of observational data to the closest population
from a family of populations represented by candidate distributions P ; and the testing
of hypothesis using the KL functional as a statistic. Note that the latter two uses per-
tain to direct assignment problems. However, following [38], the main use nowadays of
MinxEnt is as a learning rule associated with a knowledge revision problem in which an
initial model P is updated, by the addition of constraints, into an optimal distribution Q̃,
the closest to P while consistent with the information constraints provide, geometrically
interpretable [10][9] as the non-linear projection of P upon the feasible space of distri-



butions Eq specified by the testable information. This knowledge revision view provides
an alternative to Bayes probability updating rule when new information is incorporated
in the form of constraints, so the question arises which one should be used. (See [25][44]
for an examination of the different positions on their validity and mutual relations.)

In spite of conceding the possibility of interpreting MinxEnt as a probability updating
rule [25], Jaynes [26] understood entropic methods essentially as direct probability
assignment procedures, with a marked objective character. Thus, he only considered
in the discrete case the Shannon absolute entropy. In the continuous case, invariance
arguments led him to extend this absolute entropy to the entropic functional

S[Q,m] =−
∫

q(θ) log
q(θ)

m(θ)
dθ, (6)

where m(θ), the preprior, is a measure of the limiting density of discrete elementary
disjunct conjectures in the domain of parameter θ. Although the mathematical form of
(6) is, except for the negative sign, identical to the extension of KL functional (2) to the
continuum, its interpretation is very different, for, although m(θ) could play the role of
a probability density function, it need not to, and could be regarded just as a degeneracy
factor associated with the domain of θ. The difficulty with (6), nevertheless, is that m(θ)
is in general not given, so the problem of assigning probabilities and selecting an optimal
Q is eluded, by transforming it into another one, concerning the choice of m(θ).

JUSTIFICATION OF ENTROPIC INFERENCE METHODS

Contrary to other techniques, which in spite of being recognizably ‘ad hoc’ are uncriti-
cally used, there was from the beginning the aspiration of establishing entropic inference
methods on solid grounds, even more intense after the attacks for apparently allowing
getting probabilities ‘ex nihilo’, for being representation dependent under refinement
of languages, and for conflicting with Bayesian updating. In view of the multitude of
entropies and methods that can be formulated, one may ask whether there is a “best”
functional or a privileged procedure to make inference. Jaynes defended that, when the
available information takes the form of linear constraints on probabilities, the preferred
method should be MaxEnt. Many different reasons support this preference, e.g. prag-
matic success, combinatorial arguments, information theory and logical consistency.
Next we examine how definitive are these arguments.

Regarding pragmatism, the success of entropic procedures is indubitable in many
areas, starting with the derivation of the classical results of statistical physics and com-
munications theory, and the solution of inverse problems in geophysics, econometrics
and image analysis. Simplicity of formalism and computational efficiency are its main
appeals. Tractability and practical advantages, however, are not fundamental criteria,
since they depend on the developmental stage of optimization techniques, where major
improvements may always take place, and are difficult to formalize. On the other hand,
there are fields where different functionals allow to select in a more direct way distri-
butions of theoretical significance, which need not belong to the family of exponential
distributions associated with MaxEnt, and may give better results [29]. Finally, in crit-
ical disciplines, such as risk analysis of extreme events, the idea that a method is good



because “it works” does not apply, since observations are usually scarce and cannot be
used to compare with predictions. Hence pragmatism is insufficient.

Another kind of justification supporting Shannon and KL entropies is based on com-
binatorics and asymptotics. The original argument was put forward by Boltzmann, who
in the multinomial case defined entropy as a multiplicity of a distribution of particles in
different microstates and proposed the selection of the distribution of maximum multi-
plicity, which consequently can be “realized” in the greatest of ways. After a suggestion
of Wallis, Jaynes developed this approach in [24]. He also investigated how far lie other
distributions admitted by the constraints with respect to the selected maximum entropy
distribution, proving the entropy concentration theorem, which states that for a large
number of experiments, the fraction of distributions satisfying the constraints outside an
arbitrary neighbourhood is exponentially small, so that the majority of feasible distribu-
tions are concentrated close to the MaxEnt distribution. (See [17] for a critique regarding
the incorporation of constraints in the limiting process.) More general results for relative
entropy had already been offered by Kullback [34]. Recently another relevant property
was demonstrated, namely the convergence in the asymptotic limit of Bayesian condi-
tioning and MinxEnt [3]. Both results have been unified in a unique strong concentration
theorem [18]. But analysis of these large deviations arguments [9] shows that their ap-
plicability is restricted to situations with very large numbers of observations, typically
statistical physics problems. They do not cover the majority of applications, in particular
those pertaining to the modelling of extraordinary phenomena, where little evidence is
available, so cannot be regarded as universal grounds for a general foundation.

Inititally, the formal justifications for Shannon entropy were based on its properties
as a measure of uncertainty and information. Besides his original axiomatic derivation,
relying on the mathematical expression of information in terms of probabilities, and its
successive improvements by Khinchin (1957), Fadeev (1958) and Lee (1964), other ax-
iomatic approaches were proposed which made no reference to probabilities [15][21].
From a different viewpoint, Carnap and Bar-Hillel obtained the same expression for
semantic information [6]. Analogous axiomatic derivations of weight of evidence, rel-
ative entropy, information gain and directed divergence were also presented [15] [19]
[28]. However, it soon became clear that the notions of information and uncertainty are
too rich to be represented by only one functional, and many generalized expressions
for entropy were obtained from alternative sets of axioms [6][36][1]. Therefore, these
approaches cannot attribute absolute correction to Shannon and KL functionals.

Despite their importance, the former justifications have only provided partial support,
lending high plausibility to MaxEnt and MinxEnt methods, but failing to set a unitary
foundation for all sorts of applications. The most promising approach for this purpose
is the consistency-based axiomatic derivation of entropy procedures within the logical
probability framework of [32][27], analogous to the derivations of probability calcula-
tion rules of Cox [7] and Carnap [4], in conformity with the canon of plausible inference,
a set of elementary requirements of rationality and morality so essential that every sci-
entific inference theory should satisfy to avoid contradictions [41].

Jaynes conjectured that MaxEnt was the only logically consistent solution [22]. To
support his claim, he defended that Shannon’s axiomatics were really consistency argu-
ments. Now since the latter refer only to the obtention of an entropy functional for mea-
suring uncertainty, and not to its extremization subject to constraints, he had to supply



them with a reasoning based on further application of the canon. When all the relevant
information in a situation is taken into account, the maximum reduction in uncertainty is
achieved. The remaining ambiguity to determine a distribution should then be resolved
by applying a policy of honesty, frankly acknowledging the extent of our ignorance by
considering every possibility allowed by the available information. Specifically, prob-
abilities should be selected in such a way as to maximize, with respect to what is un-
known, the global uncertainty in a given state of knowledge. The resulting distribution
will be then the most rational, least biased, least prejudiced and less committed with
what is not given. Another choice would amount to presupposing more information than
really available, violating information conservation requirements, more exactly the in-
formation expliciteness and consistency demands proposed in [41]. The difficulty with
this reasoning is twofold. First [43], not all axioms express consistency properties. For
example, the importance of the additive property for independent events seems to re-
spond more to calculation reasons than to common sense [29]. In addition, the axioms
are valid only for discrete problems, so the uncertainty interpretation does not extend
easily to the continuum. Moreover, consistency refers to the functional, not to the in-
ference procedure. In any case, MaxEnt is not the only method which allows to recover
constraints without adding or eliminating information. It is not even the only entropic
method based on a reasonable representation of uncertainty. Hence its identification with
a principle of honesty is too vague to characterize just one inference procedure.

The landmark in the foundations of entropic inference was due to Shore and Johnson
[38], who made a decisive turn when they considered that the justification of entropy
methods should be based on the properties characterizing the notion of inference pro-
cedure. Their two core ideas were: a) To represent inference, when the starting point
is the high-order evidential knowledge expressed by linear constraints I on probability
distributions, as a logical operator, either as a direct assignment rule

Q̃ = F [I] (7)

for inferring a feasible distribution Q̃ consistent with I , or as an updating rule

Q̃ = G[P,I] (8)

when a reference distribution P is given too. And b) to derive the form of the logical
operator by imposing compliance with the canon of plausible inference, without re-
ferring to any subjective explanation of information. In particular they emphasized the
self-consistency requirement stipulating that reasonable inference methods should lead
to the same results when following admissible alternative ways of taking into account
equivalent information. Four axioms satisfying this requirement were then proposed: i)
uniqueness of the inferred distribution Q̃; ii) invariance under the choice of coordinates;
iii) system independence, that is invariance under decomposition of a joint system when
only independent information about its independent components is available; and iv)
subset independence, namely invariance under conditioning of a system on its disjoint
subsets. From these axioms they derived a set of functional equations whose solution is
unique, and hence considered proven that MinxEnt and MaxEnt are the only consistent
methods when the available information corresponds to expected value constraints, the
resulting form of the functionals to be extremized being just a corollary.



Motivated by this approach, similar derivations have been presented. Skilling [39]
extended it for inferring arbitrary positive functions, and also addressed the selection
of reference default models. Paris and Kern-Isberner [35][31] have investigated in more
depth the logical conception of inference in relation to common sense and conditionals,
paying attention to the representation and revision of knowledge bases using formal
languages. In contrast to previous derivations, they reached the same results without
assuming ‘ab initio’ that the operators F and G correspond to a variational problem.
Csiszár [10][9] has examined what alternative axioms would have to be adopted in
order to obtain different procedures, such as generalized entropic methods and other
statistical techniques. Specifically, he derived MinxEnt and MaxEnt independently from
two combinations of axioms. However, other generalized entropy methods, based for
instance on the extremization of (4), result when starting from different groupings.

A distinct consistency approach was advanced in [42] for the discrete case. Only
two conditions, of consistency under independent repetitions of an experiment, and
of uniformity in the way constraints are taken into account, were required, and no
variational representation in terms of extremization of a functional was assumed. In
[13] claim was also made that MaxEnt is the only consistent rule for direct assignment
of probabilities.

DIFFICULTIES IN AXIOMATICS AND APPLICATIONS

What, then, is the state of the art of the rational foundations of entropic procedures?
Where do we stand in relation to their applicability for inference purposes? Apart from
minor criticisms, the logical consistency approach of Shore and Johnson, and the sequel
of Tikoshinsky et al., were received very favourably. Nevertheless, Karbelkar [30] and
Uffink [43] independently examined their original arguments and found obscure points
and errors. Specifically, the critical issue concerns the incorporation of the idea of
independence into the axioms and proofs for the main theorems.

In [38], the axioms are phrased twice, first in an informal manner, and then formally.
The informal statement demands equivalence between the description of a joint system
in terms of a joint inferred probability distribution and the representation of its indepen-
dent components in terms of marginal inferred distributions, when the available informa-
tion refers separately to each subsystem and imposes no joint restriction on the inferred
distribution. But the formal axiom and the proof of uniqueness of MinxEnt omit this
condition of independence for the components, and require a much stronger property,
namely equivalence whether or not the system components are in fact independent. It
is well known that, under separability of the constraints expressing testable information
and factorization of the joint reference distribution P into its marginals, MinxEnt im-
plies the factorization of the joint inferred distribution Q̃. This has been interpreted as a
special principle of insufficient reason with regard to statistical dependence, since in ab-
sence of reason for correlations between components, the method selects a distribution
which does not consider any. However, the former entailment does not mean that sepa-
rability of testable information pertaining to each of the components and factorization of
P imply MinxEnt, and thus the factorization of Q̃. Karbelkar and Uffink convincingly
argue that the requirement of logical consistency cannot be applied in this case, because



the two alternative ways of modelling the joint system really start from non-equivalent
information, so the proof in [38], which pretends such an equivalence, is incorrect. In
addition, they demonstrate that the explicit inclusion of the condition of system indepen-
dence and factorization of Q̃, which is what ensures the equivalence of the informations
adopted as starting points, leads as consistent solution to Rényi’s entropies (5).

In [30][43] it is also discussed that the derivation in [42] is flawed, because it requires
an assumption of independence between repetitions of an experiment that is not ex-
plicitly incorporated in the mathematical representation of prior knowledge. When this
presupposition is taken into account, the family of Rényi entropies results as well. We
note also that a similar derivation [12], applied to the so-called Judy Benjamin problem,
allows for the generalized entropies of Rényi. In this respect we recall that the axiomat-
ics of Csiszár lead to various entropic methods too, depending on the groups of axioms
assumed. In [10] the difficulty was stressed of setting preferences among axiom systems,
and hence of ranking procedures. However, in this case the reasoning is typical of mod-
ern mathematics, for it stops at axioms level, when, as underlined in [41], no progress is
possible without the wider viewpoint that axiomatizations are to be justified on the basis
of an extramathematical canon of compelling common sense demands.

In sum, the existence of solutions to the problem of determining consistent inference
procedures has been proven, but not their uniqueness. We know that MaxEnt and Minx-
Ent, which still make in our opinion the best candidates, do not violate the demands of
the inference canon, for they are solutions in all consistency derivations. Nonetheless,
until uniqueness is not dilucidated, the foundations of inference will be incomplete.

This theoretical incompleteness entails in its turn a practical difficulty, namely the
selection of a form for an entropy procedure in real applications, which adds to the
other main difficulties encountered when putting into use the entropy formalisms: the
election of a default reference probability distribution and the choice of the constraints
expressing high-order testable information.

Regarding the selection of reference distributions P in the quasi-ignorance situation
when no testable information is at hand, consideration of one default model or another is
decisive, since the inferred distribution Q̃ may change radically depending on our choice.
Following [27], Jaynes [23][26] proposed the use of invariance arguments to select these
functions. He defended that the symmetries involved in the physical conceptualization
of parameters should be taken into account, by choosing references which are invariant
under the symmetry group of transformations. This proposal is nonetheless subject
to discussion [2], because no general constructive procedure was established, and its
application to multiparametric inferences in the continuum, where symmetries are not
self-evident, poses difficulties and may lead to distributions with undesirable properties.

Finally, concerning the choice of constraints [24][26][30][29][43][44][17], the ma-
jority of statistical inference methods assume as starting point an initial information ex-
pressed probabilistically, for example by means of constraints or through the likelihood
function. Usually it is accepted that this information represents the available empirical
evidence. The difficulty is due to the strong dependence of inferences on the exact ex-
pression of this kind of evidential knowledge, which moreover can be too complicated
and artificial, with no clear physical meaning. Entropic methods constitute no exception
to this circumstance, although they are not to be criticized more than others, since the
problem is universal. In practical terms the question is how to select among representa-



tions supposedly expressing basic evidential knowledge, especially observational data,
in view of the enormous diversity of possibilities to define moments and other restric-
tions on probabilities. The challenge, however, is to justify such a selection and respond
to why should basic evidential knowledge be represented in terms of probabilities or ex-
pected value constraints, when these evidences don’t originally have this form. Or, more
generally, to solve the old scientific question of how to connect empirical data to prob-
ability assignments and attribute physical content to inference. There are interpretative
aspects involved that make this probabilistic representation anything but automatic.

We recall the importance of three facets here: the empirical representativity of sample
functions with respect to observational data; the theoretical representativity of expected
values with respect to probability distributions; and the representativity of sample func-
tions with regard to expected values, i.e. the validity of their identification through a
so-called constraint rule, or, what is the same, the admissibility of sample functions as
estimators. When few observations are available, as in the case of extraordinary events,
this identification is problematic and unjustified, for estimators are not reliable, yet high-
order properties are required to shape the tails of probability distributions.

Therefore, new arguments are needed to determine probability representation rules.
This issue, on which formalisms are silent, beyond its practical dimension ultimately
manifests the need for more investigations on the logical expression and encoding of
basic evidences, in order to make progress towards a unified inference theory.

ACKNOWLEDGMENTS

Research was funded through grants REN2002-011337 and VEM2006-26947E of DGI,
Spain. We thank the kind support from the MaxEnt2006 Organizing Committee.

REFERENCES

1. J. Aczél and Z. Daroczy, On Measures of Information and their Characterization, New York:
Academic Press, 1975.

2. J. M. Bernardo and A. F. M. Smith, Bayesian Theory, Chichester: John Wiley Sons, 1994.
3. J. van Campenhout and T. M. Cover, “Maximum entropy and conditional probability”, IEEE Trans.

Inform. Theory IT-27, 483–89 (1981).
4. R. Carnap, Logical Foundations of Probability, Chicago: University of Chicago Press, 1950.
5. R. Carnap, Two Essays on Entropy, Berkeley: University of California Press, 1977.
6. R. Carnap and Y. Bar-Hillel, “An outline of a theory of semantic information”, Technical Report No.

247, Research Laboratory in Electronics, Massachussets Institute of Technology, 1952.
7. R. T. Cox, The Algebra of Probable Inference, Baltimore: The John Hopkins Press, 1961.
8. R. T. Cox, “Of inference and inquiry”. In The Maximum Entropy Formalism, ed. by M. Tribus and

R. D. Levine, Massachussets Institute of Technology, 1979.
9. I. Csiszár, “MaxEnt, mathematics and information theory”. In Maximum Entropy and Bayesian

Methods, edited by K. M. Hanson and R. N. Silver, Dordrecht: Kluwer, 1996, pp. 35–50.
10. I. Csiszár, “Why least squares and maximum entropy? An axiomatic approach to inference for linear

inverse problems”, Annals of Statistics 19, 2032-2066 (1991).
11. Z. Domotor, “Qualitative Information and Entropy Structures”. In Information and Inference, edited

by J. Hintikka and P. Suppes, Dordrecht, Reidel, 1970, pp. 148–196.
12. B. C. van Fraassen, “A problem for relative information minimizers in probability kinematics”,

British Journal for the Philosophy of Science 32, 375–379 (1981) and 37, 453–463 (1986).



13. A. J. M. Garrett, “Maximum entropy from the laws of probability”. In Bayesian Inference and
Maximum Entropy Methods, A. Mohammad-Djafari, Melville, NY: AIP, 2001, pp. 3–22.

14. A. Golan, G. Judge and D. Miller, Maximum Entropy Econometrics: Robust Estimation with Limited
Data, Chichester: John Wiley Sons, 1966.

15. I. J. Good, Probability and the weighing of evidence, London: Charles Griffin, 1950.
16. I. J. Good, “Maximum entropy for hypothesis formulation, especially for multidimensional contin-

gency tables”, Annals of Mathematical Statistics 34, 911–934 (1963).
17. M. Grendár Jr. and M. Grendár, “What is the question MaxEnt answers?”. In Maximum Entropy and

Bayesian Methods,, edited by A. Mohammad-Djafari, Dordrecht: Kluwer, 2001, pp. 83–93.
18. P. Grünwald and A. P. David, “Game theory, maximum entropy, minimum discrepancy, and robust

Bayesian decision theory”, Annals of Statistics 32, 1347–1433 (2004).
19. A. Hobson, “A new theorem of information theory”, J. Stat. Phys.1, 383–391 (1969).
20. R. S. Ingarden, “Information theory and variational principles in statistical theories”, Bull. Acad.

Polon. Sci. Ser. Sci. Math. Astronom. Phys. 11, 541–547 (1963).
21. R. S. Ingarden and K. Urbanik, “Information without probability”, Colloq. Math.9, 131–150 (1962).
22. E. T. Jaynes, “Information theory and statistical mechanics I”, Physics Review 108, 171–90 (1957).
23. E. T. Jaynes, “Prior probabilities”, IEEE Trans. Syst. Sci. Cybern. 4, 227–241 (1968).
24. E. T. Jaynes, “On the rationale of maximum-entropy methods”, IEEE Trans. Inform. Theory 70(9),

939–952 (1982).
25. E. T. Jaynes, “The relation of bayesian and maximum entropy methods”. In Maximum Entropy and

Bayesian Methods, G. J. Erickson and C. R. Smith, Dordrecht: Kluwer, 1988, pp. 267–281.
26. E. T. Jaynes, Probability Theory: The Logic of Science. G. L. Bretthorst (Ed.). Cambridge: Cam-

bridge University Press, 2003.
27. H. Jeffreys, Theory of Probability. Oxford: The Clarendon Press, 1939, second edition 1948.
28. R. W. Johnson, “Axiomatic characterization of the directed divergences and their linear combina-

tions”, IEEE Trans.Inform. Theory IT-25, 709–716 (1979).
29. J. N. Kapur and H. K. Kesavan, Entropy Optimization Principles with Applications, San Diego:

Academic Press, 1992.
30. S. N. Karbelkar, “On the axiomatic approach to the maximum entropy principle of inference”,

Pramana-Journal of Physics 26(4): 301–310 (1986).
31. G. Kern-Isberner, Conditionals in Nonmonotonic Reasoning and Belief Revision, Berlin: Springer,

2001.
32. J. M. Keynes, A Treatise on Probability. London: MacMillan and Co, 1921.
33. K. Knuth, “Lattice duality: The origin of probability and entropy”, Neurocomp. 67C: 245-274 (2005).
34. S. Kullback, Information Theory and Statistics, New York: John Wiley & Sons, 1959.
35. J. B. Paris, The Uncertain Reasoner’s Companion: A Mathematical Perspective, Cambridge: Cam-

bridge University Press, 1994.
36. A. Rényi, “On measures of entropy and information”. In Proceed. 4th Berkeley Symp. Math. Stat.

Probability, Vol 1, pp. 547–561, University of California Press, Berkeley, 1961.
37. C. E. Shannon, “A mathematical theory of communication”, Bell System Technical Journal 27, 379–

423 and 623–656 (1948).
38. J. E. Shore and R. W. Johnson, “Axiomatic derivation of the principle of maximum entropy and the

principle of minimum cross-entropy”, IEEE Trans. on Information theory IT–26(1), 26–37 (1980).
39. J. Skilling: “The axioms of maximum entropy”. In Maximum Entropy and Bayesian Methods, edited

by G. J. Erickson and C. R. Smith, Vol. 1, Dordrecht: Kluwer, 1988, pp. 173-187.
40. A. Solana-Ortega, “The information revolution is yet to come (An homage to Claude Shannon)”. In

Bayesian Inference and Maximum Entropy Methods, R. Fry, Melville, NY: AIP, 2002, pp. 458–473.
41. A. Solana-Ortega and V. Solana. “Another look at the canon of plausible inference”. In Bayesian

Inference and Maximum Entropy Methods, K. H. Knuth et al., Melville, NY: AIP, 2005, pp. 382–391.
42. Y. Tikochinsky et al., “Consistent inference of probabilities for reproducible data”, Physical Review

Letters 52, 1357–1360 (1984).
43. J. Uffink, “Can the maximum entropy principle be explained as a consistency requirement?”, Studies

in History and Philosophy of Modern Physics 26B, 223–261 (1995).
44. J. Uffink, “The constraint rule of the maximum entropy principle”, Studies in History and Philosophy

of Modern Physics 27, 47–79 (1996).


