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Abstract. Particle filtering is an approximate Monte Carlo method implementing the Bayesian
Sequential Estimation. It consists in online estimating the a posteriori distribution of the system
state given a flow of observed data. The popularity of the particle filter method stems from its
simplicity and flexibility to deal with non linear/non Gaussian dynamical models. However, this
method suffers from the curse of dimensionality. In general, the system state lies in a constrained
subspace which dimension is much lower than the whole space dimension. In this contribution, we
propose an implementation of the particle filter with the constraint that the system state lies in a
low dimensional Riemannian manifold. The sequential Bayesian updating consists in drawing state
samples while moving on the manifold geodesics. An Affine Generalized Hyperbolic regression
process is proposed to model the transition dynamics on the manifold. It is a parametric family able
to cover a wide range of tail behaviors of real signal distributions.

Key Words: Sequential Monte Carlo, Riemannian Manifolds, Differential Geometry, Lie
Groups.

INTRODUCTION

In this section, we recall some definitions from differentiable geometry related to the
concept of Riemannian manifolds. For further details, please refer to [1]. First, we need
to define a topological manifold as follows:

Definition 1 A manifold M of dimension n, or n-manifold, , is a topological space with
the following properties:

(i) M is Haussdorff,
(ii) M is locally Euclidean of dimension n, and
(iii) M has a countable basis of open sets.

Intuitively, a topological manifold is a set of points which can be considered lo-
cally as a flat Euclidean space. In other words, each point p ∈ M has a neighbor-
hood U homeomorphic to an n-ball in �n. Let φ be such an homeomorphism. The
pair (U,φ) is called a coordinate neighborhood: to p ∈ U we assign the n coordinates
ξ1(p), ξ2(p), ..., ξn(p) of its image φ(p) in�n. If p lies also in a second neighborhood V ,
let ψ(p) = [ψ1(p),ρ2(p), ...,ρn(p)] be its correspondent coordinate system. The transfor-



mation ψ ◦φ−1 on�n given by:

ψ ◦φ−1 : [ξ1, ..., ξn] ⇐⇒ [ρ1, ...,ρn],

defines a local coordinate transformation on�n from φ= [ξi] to ψ = [ρi]. In differential
geometry, one is interested in intrinsic geometric properties which are invariant with
respect to the choice of the coordinate system. This can be achieved by imposing
smooth transformations between local coordinate systems (see figure 1). The following
definition of differentiable manifold formalizes this concept in a global setting:

Definition 2 A differentiable (or smooth) manifold M is a topological man-
ifold with a family U = {Uα,φα} of coordinate neighborhoods such that:
(1) the Uα cover M,
(2) for any α,β, if the neighborhoods intersection Uα ∩Uβ is non empty, then φα ◦φ−1

β

and φβ ◦φ−1
α are diffeomorphisms of the open sets φβ(Uα ∩Uβ) and φα(Uα∩Uβ)

of �n,
(3) any coordinate neighborhood (V,ψ) meeting the property (2) with every

Uα,φα ∈ U is itself in U
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FIGURE 1. Differentiable manifold

On a differentiable manifold, an important notion (for the remainder of this paper)
is the tangent space. The tangent space Tp(M) at a point p of the manifold M is the
vector space of the tangent vectors to the curves passing by the point p. It is intuitively
the vector space obtained by a local linearization around the point p. More formally, it
is the vector space spanned by the differential operators ( ∂

∂ξi )p:

Tp(M) =

{
ci(

∂

∂ξi
)p | [c1, ..., cn] ∈ eRn

}
,

where the differential operator ( ∂
∂ξi )p can be seen geometrically as the tangent vector to

the ith coordinate curve (fixing all ξj coordinates j �= i and varying only the value of ξ i),
see figure 2.

For each point p in M, assume that an inner product <,>p is defined on the tangent
space Tp(M). Thus, a mapping from the points of the differentiable manifold to their
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FIGURE 2. Tangent space on the manifold

inner product (bilinear form) is defined. If this mapping is smooth, then the pair (M,<
,>p) is called Riemannian manifold.

Geodesics. A geodesic between two endpoints γ(a) and γ(b) on a Riemannian man-
ifold M is a curve γ : [a,b] −→ M which is locally defined as the shortest curve on
the manifold connecting these endpoints. More formally, the definition of a geodesic is
given by:

Definition 3 The parametrized curve γ(t) is said to be a geodesic if its velocity (tangent
vector) dγ/dt is constant (parallel), that is if it satisfies the condition (D/dt)(dγ/dt) =
0, for a < t < b.

PARTICLE FILTERING ON RIEMANNIAN MANIFOLDS

Model and objectives

The main contribution of this paper is to propose a particle filter method for filtering in
nonlinear dynamical systems, the system state being constrained to lie on a Riemannian
manifold M. Only few recent papers have tried to use the geometry of the manifold to
design learning algorithms [2? ]. Our work can be considered as an extension of [2] to
deal with general stochastic models suitable to the particle filter method.

Particle filtering is an approximate Monte Carlo method estimating, recursively in
time, the marginal posterior distribution of the continuous hidden state of the system,
given the observations. The particle filter provides a point mass approximation of these
distributions. For more details and a comprehensive review of the particle filter on
Euclidean spaces see [4].

The observed system evolves in time according to the following nonlinear dynamics:


xt ∼ px(xt | xt−1,ut)

yt ∼ py(yt | xt,ut),
(1)

where yt ∈ �ny denotes the data measured at time t, xt ∈ �nx denotes the unknown
continuous state, and ut ∈U denotes a known control signal. The probability distribution



px(xt |xt−1,ut) models the stochastic transition dynamics of the hidden state. Given the
continuous state, the observations yt follow a stochastic model py(yt | xt,ut), where the
stochastic aspect reflects the observation noise.

The Bayesian filtering is based on the estimation of the posterior marginal probability
p(xt | y1:t). The nonlinear and the non Gaussian aspect of the transition distributions
leads to intractable integrals when evaluating the marginals. Therefore, one has to
resort to Monte Carlo approximation where the joint posterior distribution p(x0:t | y1:t)
is approximated by the point-mass distribution of a set of weighted samples (called
particles) {x(i)

0:t,w
(i)
t }N

i=1:

p̂N(x0:t | y1:t) =

N∑
i=1

w
(i)
t δ

x
(i)
0:t

(dx0:t),

where δ
x

(i)
0:t

(dx0:t) denotes the Dirac function.
Based on the same set of particles, the marginal posterior probability (of interest)

p(xt | y1:t) can also be approximated as follows:

p̂N(xt | y1:t) =
N∑

i=1

w
(i)
t δ

x
(i)
t

(dxt),

In the Bayesian importance sampling (IS) method, the particles {x(i)
0:t}N

i=1 are sampled
according to a proposal distribution π(x0:t | y1:t) and {w(i)

t } are the corresponding
normalized importance weights:

w
(i)
t ∝ p(y1:t | x(i)

0:t)p(x
(i)
0:t)

π(x
(i)
0:t | y1:t)

.

Sequential Monte Carlo (SMC) consists of propagating the trajectories {x(i)
0:t}N

i=1 in time
without modifying the past simulated particles. This is possible for the class of proposal
distributions having the following form:

π(x0:t | y1:t) = π(x0:t−1 | y1:t−1)π(xt | x0:t−1,y1:t).

The normalized importance weights are then recursively computed in time as:

w
(i)
t ∝ w

(i)
t−1

py(yt | x(i)
t )p(x

(i)
t | x(i)

0:t−1)

π(x
(i)
t | x(i)

0:t−1,y1:t)
. (2)

The particle filter algorithm consists of 2 steps: the sequential importance sampling
step and the selection step. The selection (resampling) step replaces the weighted par-
ticles by unweighted particles in order to avoid the collapse of the Monte Carlo ap-
proximation caused by the variance increase of the weights. It consists of selecting the
trajectories {x(i)

0:t} with probabilities w(i)
t . The trajectories with weak weights are elimi-

nated and the trajectories with strong weights are multiplied. After the selection step, all
the weights are equal to 1/N .



One of the simplest choices for the proposal distribution π(xt | x0:t−1,y1:t) is the
transition prior px(xt | xt−1,ut). The weights w(i)

t are then proportional to the data
likelihood:

w
(i)
t ∝ w

(i)
t−1py(yt | x(i)

t ). (3)

The density distribution py is fixed by the observation model. Concerning the transi-
tion prior px(xt | xt−1,ut), we propose in this paper a Multivariate Affine Generalized
Hyperbolic Regression model. Multivariate Hyperbolic processes have attractive ana-
lytical and statistical properties. In particular, this parametric family is able to describe
the fat tails and the skewness of the regression model px(xt | xt−1,ut). In the following,
after describing this statistical model, we propose an efficient algorithm to draw samples
in the particle filter context.

Multivariate Affine Generalized Hyperbolic Regression (MAGH-R)

Before introducing the Multivariate Affine Generalized Hyperbolic Regression
model, we briefly describe the Generalized Hyperbolic distributions and their main
properties (for more details refer to Barndorff-Nielsen’s original work [5] or Bibby and
Sorensen paper [6]). Generalized hyperbolic distributions form a five parameter family
GH(λ,α,β,δ,µ) introduced by Barndorff-Nielsen (1977). If the random variable X
follows the distribution GH(λ,α,β,δ,µ) then its pdf reads,

(γ/δ)λ

√
2πKλ(δγ)

.
Kλ− 1

2
(α

√
δ2 +(x−µ)2)

(
√
δ2 +(x−µ)2/α)

1
2
−λ

.eβ(x−µ), x ∈� (4)

where γ2 = α2−β2 and Kλ(.) is the modified Bessel function of third kind:

Kλ(y) =
1

2

∫ ∞

0

uλ−1e−
1
2
y(u+u−1)du.

GH distributions enjoy the property of being invariant under affine transformations.
If X ∼ GH(λ,α,β,δ,µ), then the random variable aX + b follows the distribution
GH(λ,α/a,β/a,aδ,aµ+ b). Many known subclasses can be obtained, either by fixing
some parameters or by considering limiting cases: λ = 1 and λ = −1/2 respectively
yield the hyperbolic and the NIG distributions (the latter being closed under convolution)
; λ= 1 with δ→ 0 provides the asymmetric Laplace distribution ; λ=−1/2 with α→ 0
corresponds to the Cauchy distribution ; the asymmetric scaled t-distribution is obtained
for α= |β|, etc. Thus, varying the parameters of the GH distributions yields a wide range
of tail behaviors, from Gaussian tails to the heavy tails of the Student t-distributions.
Figure 3 depicts examples of GH distributions. One can note that a wide range of tail
behaviors is covered and the possibility of modeling the distribution asymmetry (via the
parameter β).

Stochastic processes are usually defined on Euclidean spaces. In order to define a
stochastic process on a Riemannian manifold M, the notion of exponential mapping
represents an interesting tool to build a bridge between an euclidean space and the
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FIGURE 3. Examples of the GH distributions:
(a) hyperbolic case: λ = 1,α = 1,β = .5,δ = .001,µ = 0 ;
(b) Cauchy case: λ = −.5,α = .01,β = .001,δ = .01,µ = 0 ;
(c) Student case: λ = 3,α = 1,β = 1,δ = 1,µ = 0.
Pdfs appear on top row, log densities on bottom row. The dashed line corresponds to the Gaussian
distribution with same mean and variance.

Riemannian manifold. For a point p and a tangent vector X ∈ Tp(M), let γ : t=⇒ γ(t)

be the geodesic such that γ(0) = p and dγ
dt

(0) = X . The exponential mapping of X is
defined as Ep(X) = γ(1). In other words, the exponential mapping assigns to the tangent
vector X the endpoint of the geodesic whose velocity at time t = 0 is the vector X
(see figure 4). It can be shown that there exist an neighborhood U of 0 in Tp(M) and a
neighborhood V of p in M such that Ep |U is a diffeomorphism from U to V . Also, note
that since the velocity dγ/dt is constant along the geodesic γ(t), its length L from p to
Ep(X) is:

L=

∫ 1

0

‖dγ
dt

‖dt=

∫ 1

0

‖X‖dt= ‖X‖.

The exponential mapping Ep(X) corresponds thus to the unique point on the geodesic
whose distance from p is the length of the vector X .

Ep(X)

M

Tp(M)

p

X

FIGURE 4. Exponential mapping on the manifold



The Multivariate Affine Generalized Hyperbolic Regression process is the extension
of the model proposed in [7] to Riemannian manifolds. It is defined as follows:

Definition 4 An n-dimensional random process (Xt)t∈� ∈ M is said to be multi-
variate regressive affine generalized hyperbolic process distributed with scaling ma-
trix Σ ∈ �n×n and parameters ω := (ω1, ...,ωn), ωi = (λi,αi,βi) and denoted by
MAGH-RM(Σ,ω) if it has the following recursive stochastic representation:

Vt = ATZ

Xt = EXt−1(
∑

V i
t (

∂

∂ξi
)Xt−1)

for some lower triangular matrix A ∈�n×n such that ATA = Σ is positive definite and
the random vector Z = (Z1, ...,Zn)T consists of mutually independent random variables
Z i ∼ GH(λ,α,β,1,0).

In words, the sample Xt is obtained by first drawing a multivariate generalized
hyperbolic tangent vector in the tangent space TXt−1(M), then applying the exponential
mapping on it.

Sampling the MAGH-R process on Riemannian Manifolds

An important feature of the GH distribution is its expression as a continuous normal
mean-variance mixture:

GH(x;λ,α,β,δ,µ) =

∫ ∞

0

N (x;µ+βw,w)GIG(w;λ,γ,δ)dw (5)

where the variance W of each Gaussian component follows a Generalized Inverse
Gaussian (GIG) distribution:{

GIG(w;λ,γ,δ) = (γ/δ)λ

2Kλ(δγ)
.wλ−1.exp

[−1
2
(δ2w−1 +γ2w)

]
,

w > 0

In other words, the Generalized Hyperbolic process can be seen as a double stochastic
process:

1. First generate1 W ∼GIG(λ,γ,δ).
2. Then generate X ∼N (µ+βW,W )

We turn now to the generation of the MAGH-RM(Σ,ω) process on the manifold M:
Pseudo algorithm for generating MAGH-RM process:

1 Among the Matlab files freely available from the first author, the program rGIG.m efficiently simulates
a GIG random variable.



(I) Initialize X0 ∼ P0(.)
(II) for t= 1,2, ...

(1) Set Σ = AT A via Cholesky decomposition.
(2) Generate a random vector Z with independent Z i ∼ GH(λ,α,β,1,0) (see above
(3) Set the velocity V = ATZ in the tangent space TXt−1(M)

(4) Return Xt = EXt−1(
∑

V i
t (

∂

∂ξi
)Xt−1)

Hereafter the pseudo algorithm of the particle filter on Riemannian manifolds:�

�

�

�

Step 0: Initialization
- X0 ∼ P0(.)
Step 1: For t= 1 to T ,

a- Sequential importance sampling:

- For i= 1, ...,N , sample from the transition priors on the manifold M:

X̂
(i)
t ∼ MAGH-RM(Σ,ω) around X̂(i)

t−1

and set
(X̂

(i)
0:t) = (X̂

(i)
t ,X

(i)
0:t−1)

b- Update the importance weights:

- For i= 1, ...,N , evaluate and normalize the weights:

w
(i)
t ∝ p(yt | X̂(i)

t )

c- Resampling:

- Select with replacement from {X̂(i)
0:t}N

i=1 with probability {w(i)
t } to obtain N particles

X
(i)
0:t}N

i=1
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