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Abstract. The present contribution discusses a Riemannian-gradient-based algorithm and a
projection-based learning algorithm over a curved parameter space for single-neuron learning. We
consider the ‘blind deconvolution’ signal processing problem. The learning rule naturally arises
from a criterion-function minimization over the unitary hyper-sphere setting. We consider the
blind deconvolution performances of the two algorithms as well as their computational burden and
numerical features.
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INTRODUCTION

Over the recent years, we have witnessed an increasing interest into application of
geometrical methods to machine learning [1]. The key idea isthat a network parameter
space, either flat or curved, may be endowed with a specific geometric structure (in the
sense of differential geometry), which is worth taking intoaccount in the design of a
network learning algorithm. A widely known example is thenatural gradienttheory.
A family of multilayer perceptrons may be associated a parameter space that forms a
geometrical neural manifold. Such a manifold does not possess a Euclidean geometrical
structure, but a Riemannian structure. It is a common experience that the standard
gradient learning algorithms, such as back-propagation, may be trapped or seriously
slowed down by large plateaus located on the surface of the network error criterion
during the learning processes. Recent studies have shown that learning algorithms based
on natural gradient, which takes into account the geometrical structure of the neural
manifold, do seem to be less affected by this difficulty [17].

The adoption of sophisticated mathematical instruments inherently brings incremen-
tal conceptual complexity into the classical learning theories and may bring additional
computational/numerical burden into the related learningalgorithms. With reference to
the relationship between learning theories and learning algorithms, it is worth noting
that the learning rules may arise from the optimization of a learning criterion via a suit-
able method, such as the gradient-based one, and are expressed as learning differential
equations on the network parameter space. Such differential equations must then be dis-
cretized in the time domain in order to make them suitable forimplementation on a
computer. In the case of flat (Euclidean) parameter spaces, the discretization in the time



domain may be effected through classical numerical calculus techniques, such as the
forward or backward Euler method or more sophisticated methods that aim at increas-
ing the precision of the approximation. When dealing with curved parameter spaces,
however, such methods are no longer suitable and discretization techniques developed
in the mathematical field of geometrical numerical integration should be invoked, in-
stead, [5, 11, 12]. In the present contribution, we considera signal processing problem,
namelyblind deconvolution, which may be tackled via a single learning neuron model,
whose learning strategy naturally arises as criterion-function minimization over a curved
parameter space. Blind deconvolution [8, 15] is a statistical signal processing technique
that aims at recovering a source signal distorted by the medium that it propagates within.
Well-known engineering applications of blind deconvolution are equalization of commu-
nication channels [3], optomagnetic memory-support storage and retrieval enhancement
[6], image deblurring [16] as well as geophysical measurements analysis [21]. An effec-
tive blind-deconvolution technique is known as ‘Bussgang’, which relies on the iterative
Bayesian estimation of the source sequence, where the Bayesian estimator is matched to
source statistics and to the model of the filter output signal[2]. Some modified Bussgang
algorithms, based on neural-type approximate Bayesian estimators, have recently been
proposed by the present author in [10].

The aim of the present contribution is to discuss a Riemannian-gradient-based algo-
rithm and a projection-based algorithm for Bussgang-type blind deconvolution. The first
algorithm is based on the key concept of discretizing a differential equation on manifold
via suitably connected piece-wise geodesic arcs [9]. The second algorithm is based on
the more familiar concept of embedding the parameter space into a larger Euclidean am-
bient space, which allows effecting learning steps as if theparameter space was flat, and
to back-projecting the current network state into the curved parameter space through a
suitable projection operator. We consider the blind deconvolution performances of the
two algorithms as well as their computational requirements, in order to gain incremen-
tal knowledge on the benefits and drawbacks pertaining to both methods on a signal-
processing application.

‘BUSSGANG’-TYPE LEARNING

The sampled or discrete-time system to deconvolve is described by the following in-
put/output model:

xn = hT sn +νn , (1)

where sn is the system’s input vector-stream at timen ∈ 1..N ⊂ Z, namely
sn

def
=[sn sn−1 sn−2 . . . sn−Lh+1]

T , sn denotes the sampled source signal andνn

represents a zero-mean white measurement disturbance independent of the source
signal. The constantLh denotes the length of the system impulse responseh. The
following minimal hypotheses about the system and data stream may be considered
[4, 15]: The system’s impulse response satisfieshTh = 1 and its inverse has finite
energy; the system is time-invariant or slowly time-varying; the source signalsn is a
stationary, ergodic, independent identically distributed (IID) random process with mean



IEs[sn] = 0 and varianceIEs[s
2
n] = 1; also, the probability density function of the source

signal is supposed to be symmetric around zero and non-Gaussian.
A filter described by the vector impulse responsew = [w0 w2 w3 . . . wLw−1]

T repre-
sents the approximate inverse of system (1) if filterw approximately cancels the effects
of channelh on the source signal. Denoting withxn the vector containing the filter input
samples at timen ∈ 1..N ⊂ Z, namelyxn

def
=[xn xn−1 xn−2 . . . xn−Lw+1]

T , where the
constantLw denotes the length of the inverse filter impulse responsew, the output of
the filter writes:zm,n = wT

mxn, m∈ 1..M ⊂Z. In this paper, we distinguish between the
time-indexn, which denotes sample time-ordering, and the learning-iteration indexm,
which denotes learning-iteration time-ordering. In on-line learning, it may holdm = n,
while in batch-type learning, as it is the case in the presentcontribution, the two indices
are independent.

In general, the deconvolution may only be approximate because of the possible pres-
ence of additive noise affecting the system’s output measure and because a finite-
impulse-response (FIR) filter cannot represent the inverseof the FIR system (1) (for
more details, the Reader is addressed to [8, 10, 15]). Sinceh andsn are both unknown,
the optimal filterw⋆ such thatz⋆,n ∼ sn has to beblindly identified, possibly by means
of a neural algorithm. From the basic theory of blind deconvolution, it is known that the
source signal may be recovered up to arbitrary amplitude scaling and time-delay [15].
In the present setting, however, we suppose, without loss ofgenerality, that the source
stream power and the system energy are known, thus the amplitude of the recovered
source is controlled by the norm of the weight-vectorw. Also, during filter learning,
the misadjustment of filter’s coefficients makes the filter-output differ from the source
signal.

An appropriate Bayesian estimator of the source sequence ofthe formB(zm,n) can be
designed according to Bayesian estimation theory. On the basis of the available memory-
less Bayesian estimator, in [2] the error criterionC(wm)

def
= 1

2
IEzm,n

[

(zm,n −B(zm,n))2
]

had been proposed by Bellini. For uniformly distributed source stream, which is of inter-
est, e.g., in telecommunication systems, a suitable approximation of the actual Bayesian
estimatorB(z) is the neural transfer function [15]:

B̂(z) = κtanh(λz) , (2)

with κ andλ being properly tuned parameters. In order to select suitable values for these
parameters, in [10] we proposed to adapt them through time bymeans of a gradient-
based algorithm applied toC(κ,λ,w). In the recent contribution [13], a batch procedure
was proposed in order to optimize the values of the parameters κ andλ in the neural
activation function (2) prior to filter learning. The same procedure is adopted in the
present work as a pre-learning stage. (An extensive analysis of the selection criterion for
these parameters is available in [14].) Also, the automaticgain control (AGC) constraint,
which is typical in telecommunications, may be invoked. TheAGC constraint aims
at keeping constant the energy of the filter impulse responsesequence, that means
enforcing the constraint:

w2
0 +w2

2 +w2
3 + · · ·+w2

Lw−1 = 1 . (3)
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FIGURE 1. A neuron with filtering synapses. (Unitary delayers endow the neural system with temporal
memory, namely with samplesxn−i, while wi,m denotes the value of theith filter tap-weight at itera-
tion m.) The quantitycm ∈ R denotes instantaneous amplitude warping and quantityδm ∈ Z denotes
instantaneous group delay intrinsic to deconvolution process.

It deserves recalling here that the employed neural structure is closely related a neural
multi-layer perceptron (MLP) structures endowed with filtering synapses (a review of
which was given, e.g., in [20]), even if its learning paradigm is, by the ‘blind’ nature of
the problem, inherently unsupervised. A sketch of the employed deconvolving neuron is
shown in the Figure 1.

DISCUSSED ALGORITHMS

The aims of this section are to recall the geodesic-based deconvolution algorithm, which
relies on the geometry of the parameter space induced by the AGC constraint (3), and
the projection-based algorithm. Also, details on the stability of the algorithms are given.

Learning algorithm based on geodesic-arcs

The first step in the development of a gradient-based algorithm consists in the recog-
nition of the geometry of the parameter space induced by the AGC constraint. The pa-
rameter space is the hyper-sphereSp−1def

={v ∈ Rp|vTv = 1}. At every pointv ∈ Sp−1,
the linear space tangent to the sphere has structure:

TvSp−1def
={u ∈Rp|uTv = 0} . (4)

In fact, by definition, the tangent space atv is spanned by vectors tangent to the curves
belonging to the base manifold and passing by the pointv. Let us consider, thus, a
generic smooth curvev(t) parameterized byt ∈R, which passes by the indicated point



at t = 0. The tangent vector to the curve is the velocity vectorv̇(t) at time t = 0.
The velocity vector should satisfyd

dt
(vT (t)v(t)) = 0, that is,2v̇T (t)v(t) = 0. At time

t = 0, the latter condition gives the tangency condition in (4). Also, the normal space
at every point of the base-manifold, which is the orthogonalcomplement of the tangent
space with respect to a suitable Euclidean ambient space that the manifold is embedded
within, may be defined as well. Here we make use of the definition NvS

p−1def
={r ∈

Rp|〈r,u〉Rp

= 0 , ∀u ∈ TvSp−1} = {λv|λ ∈R}, where the ambient space was assumed

to beRp, endowed with its canonical scalar product:〈r1,r2〉Rpdef
=rT

1 r2 for all r1,r2 ∈Rp.
The smooth manifoldSp−1 is turned into a Riemannian manifold by endowing it with a
local scalar product〈·, ·〉v : TvSp−1×TvSp−1 →R.

As an optimization method that allows to look for the minimum(or local minima) of
the functionf(v) overSp−1, the standard Riemannian-gradient-based rule:

dv

dt
= −∇Sp−1

v
f , (5)

may be employed. From differential geometry, it is known that, given a regular function
f : Sp−1 →R, its Riemannian gradient is the vector∇Sp−1

v
f that satisfies the following

conditions:

∇Sp−1

v
f ∈ TvSp−1 and〈∇Sp−1

v
f,u〉v =

(

∂f

∂v

)T

u , ∀u ∈ TvS
p−1 .

In order to compute the Riemannian gradient, it is necessaryto select a metric. The
unit-hyper-sphereSp−1 is a special case of a more general geometrical structure known
as Stiefel manifold, for which two metrics are commonly employed: The Euclidean and
the canonical metrics (see e.g. [9, 11]). In the case ofSp−1, these metrics coincide and
are given by the uniform metric〈u1,u2〉vdef

=uT
1 u2. By applying the above conditions, we

get∇Sp−1

v
f = (Ip −vvT )∂f

∂v
, whereIp denotes thep×p identity matrix. For the blind-

deconvolution problem at hand, the differential equation (5) may thus be customized
as:

dw

dt
= −(Ip−wwT )

∂C(w)

∂w
. (6)

In the blind deconvolution context, the dimension of the parameter space coincides to the
length of the inverse filter impulse response, namelyp = Lw. For the partial derivative
of the cost function, it holds:

∂C(w)

∂w
= IEx[γ(z)x] , γ(z)

def
=(B(z)−z)(B′(z)−1) . (7)

In practice, a suitable numerical integration method should be selected in order to
solve the differential equation (5). We propose here to employ the integration method
based on geodesic arcs.

On a Riemannian manifold embedded in a Euclidean space, a geodesic may be defined
as a curve on which a particle, departing from the pointv0 with velocityg, slides with
constant scalar speed‖g‖. We denote such curve asv(t) = Γ(t,v0,g), where the variable



t ≥ 0 provides a parameterization. In the present context,v0 ∈ Sp−1 andg ∈ Tv0
Sp−1.

The equation of the geodesic may be found by observing that the acceleration of the
particle is either null or normal to the tangent space at any point, namelyv̈ ∈ NvS

p−1.
In explicit form, the equation of the geodesic on the unit hyper-sphere may be found by
solving the following system:

v̈−λv = 0 , v(0) = v0 ∈ Sp−1 , v̇(0) = g ∈ Tv0
Sp−1 . (8)

The solution of the above differential system is [7]:

v(t) = Γ(t,v0,g) = cos(‖g‖t)v0 +sin(‖g‖t) g

‖g‖ , (9)

where‖ · ‖ denotes the standardL2 vector norm. It is straightforward to verify that
vT (t)v(t) = 1, v̇T (t)v(t) = 0 and that‖v̇(t)‖ = ‖g‖, for all t ≥ 0. The relationship
(9) for the geodesic represents a ‘great circle’ on the hyper-sphere, which is a closed
curve, therefore, it makes sense to restrict the value oft to an interval such that, e.g.,
0 ≤ ‖g‖t ≤ π.

A way to approximate the exact flow of the differential equation on a manifold (6) via
geodesic arcs is to make use of the following iteration rule:

wm = Γ
(

δ,wm−1,−∇Sp−1

wm−1
C(w)

)

, m ∈ 1..M , (10)

whereδ denotes an appropriate constant adaptation stepsize andw0 ∈ Sp−1. It is known
[7], that the geodesic step (10) provides a first-order approximation to the true flow of
the differential equation (6) with initial conditionwm, namelywm−w(δ) = o(δ2).

Learning algorithm based on projection

A second way individuated in this paper to perform adaptation on the unit hyper-
sphere is updated-vector projection. Technically, it is first necessary to perform the
embeddingSp−1 →֒ Rp of the hyper-sphere into the Euclidean manifoldRp, so that
we get a larger ambient space to move in. Now, every updating step may be performed
safely fromSp−1 to Rp, by following, e.g., Euclidean gradient direction, and then the
updated vector may be projected back to the manifoldSp−1 by the help of a suitable
projectorΠ : Rp → Sp−1: The update vector before projection does not belong to the
unit hyper-sphere and it is therefore necessary to project it into the sphere through the
operatorP (·). The algorithm may be formally described as:

wm = P



wm−1− δ
∂C(w)

∂w

∣

∣

∣

∣

∣

w=wm−1



 , P (v)
def
=

v√
vTv

. (11)

The quantityδ in the projection-based algorithm (11) denotes again an appropriate
constant adaptation stepsize.



On the stability of learning algorithms

With reference to the geodesic-based algorithm, it is easy to recognize that, if the
time to within the geodesic is extended is short enough, thenthe algorithm essentially
follows the Riemannian-gradient flow. In fact, fort small enough, the expression (9)
may be approximated as:

Γ(t,v0,g) ≈
(

1− ‖g‖2t2

2

)

v0 +gt .

If this approximation is plugged in the expression (10), theresult is:

wm−wm−1

δ
≈−

‖∇Sp−1

wm−1
C(w)‖2δ

2
wm−1−∇Sp−1

wm−1
C(w) .

The above expression shows how the approximate derivativewm−wm−1

δ
has a normal

component (the leftmost one on the right-hand side) and a tangent component (the
rightmost one on the right-hand side). The normal componentmay be made arbitrarily
small by properly selecting the learning stepsizeδ. In any case, it is interesting to note
that the normal component points towards the interior of thehyper-sphere, so it likely is
not a source of instability.

About the projection-based algorithm, it falls within the class of fixed-point algo-
rithms [13, 19]. The standard mathematical tool for provingthe convergence of such
kind of algorithms is the Banach theorem, which insists on the contractivity of the op-
erator that describes how a vector-statewm−1 is transported intowm. However, in the
author’s experience (and as confirmed by the numerical experiments presented in the
next section), often proving/checking that such operator is not contractive is a hard task
and yet the algorithm is convergent. A different approach ispursued, e.g., in [18], where
a stepsize sequence is computed in such a way to ensure a fixed-point algorithm does
converge, on the basis of the local curvature of the criterion function to be optimized.

RESULTS OF NUMERICAL EXPERIMENTS

In the following experiments, it is assumed thatsn is a white random signal uniformly
distributed within[−

√
3,+

√
3], whose length is ofN = 5,000 samples.

The system deconvolution accuracy may be measured by means of the residual inter-

symbol interference (ISI), defined as [19] ISIm
def
=

T
T
mTm−T 2

m,max

T 2
m,max

, whereTm
def
=h⊗wm

denotes the convolution between the system’s impulse response and the inverse filter’s
impulse response, andTm,max denotes the component ofTm having the maximal abso-
lute value.

Whenever appropriate, thanks to the hypothesized ergodicity, the ensemble average
IE[·] may be numerically estimated byIEzm,n

[Φ(zm,n)] ≈ 1

N

∑N
n=1 Φ(zm,n), which is a

function ofm, for a generic vector-valued functionΦ : R→Rp.
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FIGURE 2. Trajectories of the randomly initialized geodesic-based blind-deconvolution algorithm on
the base manifoldS2 for the experiment with the non-distorting channel.

Numerical experiments with a toy channel

In order to illustrate the behavior of the geodesic-based algorithm as well as
projection-based blind-deconvolution algorithm, it deserves to consider first a low-
dimensional experiment with a toy (non-distorting) channel. We considered the chan-
nel’s impulse response to beh = [1] (namely,Lh = 1) and the base manifold to beS2

(namely,Lw = 3). In this case, the base-manifold as well as the learning trajectorywm

may be rendered in graphical way. In this experiment, the global channel-filter-cascade
impulse responseTm = h⊗wm = wm, therefore, as the channel impulse response
is non-distorting, if we let the Bussgang neuron learning trajectory departs from a
randomly generated weight-vectorw0 ∈ S2, it should eventually converge to one of the
six attractors[±1 0 0]T , [0 ±1 0]T or [0 0 ±1]T .

The numerical results for the geodesic-based algorithm, obtained on100 independent
trials with randomly generated initial weight-vectors on the sphere, withM = 100
learning iterations per trial, with learning stepsizeδ = 0.5, are depicted in Figure 2: All
the whole trajectories are completely lying on the sphere and converge to one of the six
attractors placed on it. No diverging (i.e., manifold-escaping) trajectories were observed.
The numerical results for the projection-based algorithm,obtained on100 independent
trials, with M = 100 learning iterations per trial, with learning stepsizeδ = 0.9, are
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FIGURE 3. Trajectories of the randomly initialized projection-based blind-deconvolution algorithm
on the base manifoldS2 for the experiment with the non-distorting channel: Dotted-line corresponds to
normalized trajectory, while crossed-line corresponds tothe steps before normalization.

depicted in the Figure 3: In this figure, both the filter impulse response trajectories before
normalization and after normalization may be observed. Alltrajectories converge to one
of the six attractors.

Numerical experiments with a telephonic channel

The discussed algorithms were tested to learn an inverse filter for the sampled tele-
phonic channel described in [4] having durationLh = 14: Its features are illustrated
in Figure 4 (the channel impulse response has been normalized so thathTh = 1). The
length of the neural filter impulse response was assumedLw = 14 as the result of vali-
dation [10, 13, 14]. In all the following experiments, the initial impulse response of the
filter, namelyw0, was assumed as a null sequence, except for the7th tap-weight that was
set to1.

Results concern the analysis of the behavior of the geodesic-based and projection-
based algorithms on a noiseless channel (i.e., model (1) with νn ≡ 0 identically). The
Figure 5 illustrates the performance indices pertaining toboth algorithms, in which
the constant learning stepsizeδ = 1 was chosen for the geodesic-based algorithm and
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FIGURE 4. Sampled telephonic channel. Left: Zero-plot and impulse response bar. Right: Ampli-
tude/phase of the frequency responseH(ejω) of the channel.

δ = 0.9 was chosen for the projection-based algorithm, as a result of validation. The
Figure 5 also illustrates the learnt filter afterM = 80 learning iterations as well as the
convolutionT after learning (this result is almost the same for both algorithms). While
both algorithms perform in a satisfactory way, reaching fairly low ISI values, it is to be
noted that the geodesic-based one converges more steadily,in this case.

Computational complexity comparison

The discussed algorithms were compared in terms of computational complexity,
where the flops-count and the elapsed-time for every run are retained as measures of
the computational burden of each algorithm provided they exhibit comparable decon-
volution performances. The experiments were performed under MATLAB © 5.3, which
provides flops count, on a 1.86GHz – 512MB machine. The results of this comparative
analysis are summarized in the Table 1. Both algorithms wererun on the same batch of
5,000 channel output samples, on the same noiseless BGR channel and adapted through
M = 50 iterations. The flops count refers to the number of floating point operations re-
quired by the implemented code to run, averaged over the total number of samples (in
this case5,000×50). In this comparison, the time count refers to the total timerequired
by each algorithm to run on the specified platform. As alreadynoted, the deconvolution
performances are comparable for the two algorithms, while the projection-based one
proves to be slightly lighter from a computational point of view.
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FIGURE 5. Experiments on sampled telephonic channel. Comparison of results obtained with the
geodesic-based (solid line) and projection-based (dashed-line) blind deconvolution algorithms: Perfor-
mance indices and learnt filter.

TABLE 1. Results of computational-complexity
comparison of the geodesic-based algorithm and the
projection-based algorithm.

ALGORITHM ISI (dB) Flops Time (sec.s)

Geodesic-based −25.057 80.594 0.328

Projection-based −25.056 81.582 0.313

CONCLUSIONS

This contribution aimed at discussing a numerical comparison of a Riemannian-
gradient-based and a projection-based learning algorithmover a curved parameter
space for single-neuron learning with application to blinddeconvolution, which may be
tackled via a single learning neuron model whose learning strategy naturally arises as
criterion-function minimization over the unitary hyper-sphere.

The blind deconvolution performances of the two algorithmsas well as their compu-
tational burden and numerical features were considered andcompared. The numerical
results evidenced that both algorithms are well-behaving and that the geodesic-based
algorithm exhibits steadier convergence.
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