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Abstract. In this tutorial talk, we will first review the main established tools of probability and
information theories. Then, we will consider the followingmain questions which arise in any
inference method: i) Assigning a (prior) probability law toa quantity to represent our knowledge
about it, ii) Updating the probability laws when there is newpiece of information, and iii) Extracting
quantitative estimates from a (posterior) probabilty law.

For the first, the main tool is the Maximum Entropy Principle (MEP). For the second, we have
two tools: i) Minimising the relative entropy (the Kullbak-Leibler discrepency measure), and
ii) The Bayes rule. We will make precise the appropriate situations to use them as well as their
possible links. For the third problem, we will see that, evenif it can be handeled through decision
theory, the choice of an utility function may depend on the two previous tools used to arrive at
that posterior probability. Finally, these points will be illustrated through examples of inference
methods for some inverse problems such as image restorationor blind source separation.
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NOTATIONS AND INTRODUCTION

In what follows, we will use the following notations:
A discrete valued quantity of interest:X ∈ {ω1, · · · ,ωn}
Probabilities: p = {p1, · · · ,pn}, pj = P(X = ωj)
Information quantities: I = {I1, · · · , In}, Ij = ln 1

pj
= − lnpj

Entropy [1] : H(p) = E{Ij} = −
∑n

j=1 pj lnpj

Prior probabilities: q = {q1, · · · , qn}
Relative Entropy (Kullbak-Leibler): K(p : q) =

∑n

j=1 pj lnpj/qj

Data type 1:K expected values: dk = E{φk(X)} =
∑n

j=1 pj φk(ωj), k = 1, · · · ,K
Data type 2:N direct samples: x = {x1, · · · ,xN}
Data type 3:N indirect samples: y = {y1, · · · ,yN} with y = Ax
Data type 4:N indirect noisy samples:y = {y1, · · · ,yN} with y = Ax+ǫ

For a continuous valued quantity of interestX ∈ C, whereC is a compact, we note
by p(x) its probability density function (pdf). Then the entropy (rate) ofp(x) is defined
asH(p) = −

∫
p(x) lnp(x) dx and the relative entropy ofp(x) over q(x) is defined as

K(p : q) =
∫

p(x) lnp(x)/q(x) dx.



ASSIGNING PROBABILITIES

Assigning a probability distribution to a quantityX to represent our knowledge about
it depends on the nature of that knowledge. We consider first two cases: i) a set of
expected values and ii) a set of direct observations onX. The main tool for the first is
the Maximum Entropy Principle (MEP) [2, 3, 4, 5] and for the second is the Maximum
Likelihood (ML). We then will see the link between the two approaches.

Maximum Entropy Principle (MEP)

The mathematical problem is stated as:
Given a set of data type 1: dk = E{φk(X)}=

∑n

j=1 pj φk(ωj), k = 1, · · · ,K, assign
the probabilitiesp = {p1, · · · ,pn}.
This problem has, in general, an infinite number of possible solutions. The main tool
here to choose one of them is the Maximum Entropy Principle (MEP):
Among all the possible solutions choose the one with maximumentropy

maximize H(p) = −
∑

j

pj lnpj s.t.
∑

j

pj φk(ωj) = dk, k = 1, · · · ,K

The solution is obtained by defining the Lagrangian

L = −
n∑

j=1

pj lnpj +
K∑

k=0

λk

(
n∑

j=1

pj φk(ωj)−dk

)

and finding its stationnary point:

{
∂L
∂pj

= 0 −→ pj = 1
Z(λ)

exp
[
−
∑K

k=1 λkφk(ωj)
]

∂L
∂λk

= 0 −→−∂ lnZ(λ)
∂λk

= dk −→ λ∗
,

gives the ME solution:

pj =
1

Z(λ∗)
exp

[
−

K∑

k=1

λ∗
kφk(ωj)

]
= exp

[
−λ0−

K∑

k=1

λ∗
kφk(ωj)

]

where Z(λ) = exp[λ0] =
∑n

j=1 exp
[
−
∑K

k=1 λkφk(ωj)
]

For the continuous case, by extension, we have:

maximize H(p) = −

∫
p(x) lnp(x) dx s.t.

∫
p(x)φk(x) dx = dk, k = 1, · · · ,K

Again writing the expression of the Lagrangian

L = −

∫
p(x) lnp(x) dx+

K∑

k=0

λk

(∫
p(x)φk(x) dx−dk

)



and finding its stationnary point, we obtain

p(x) =
1

Z(λ∗)
exp

[

−

K∑

k=1

λ∗
kφk(x)

]

where Z(λ) = exp[λ0] =
∫

exp
[
−
∑K

k=1 λkφk(ωj)
]

dx.

In both cases, this solution has the following properties:

−
∂ lnZ(λ)

∂λk

= −
∂λ0(λ)

∂λk

= E{φk(X)} ,

−
∂ lnZ(λ)

∂λk∂λl

= −
∂λ0(λ)

∂λk∂λl

= E{φk(X)φl(X)} ,

H = λ0 +
∑

k

λkE{φk(X)} and Hmax= λ0 +
∑

k

λkdk.

For more details see [6].

Maximum Likelihood (ML)

Considering the case where we have observed a set of direct samples x =
{x1, · · · ,xN} of X and we want to assign a probability distributionp to it to rep-
resent this knowledge. The main idea behind the Maximum Likelihood (ML) approach
is to consider a parametric familyp(x|θ) to represent this knowledge. Then, it is
assumed that the samplesxj are obtained independently from this distribution thus
defining the likelihoodL(θ) = p(x;θ) =

∏N

j=1 p(xj |θ). Then, the Maximum Likelihood

estimate is defined aŝθ = argmaxθ {L(x|θ)}. Finally,p(x|θ̂) will represent the state of
knowledge of this model and those data.

A particular case of parametric family is the exponential family wherep(x|θ) is the
the following form

p(x;θ) =
1

Z(θ)
exp

[
−

K∑

k=1

θkφk(x)

]

for which we can see some link between ME and ML solutions.
We also may note that, even those methods callednon-parametric, have a parametric

form. For example in Kernel based methodp(x|θ) =
∑N

j=1 θj h(x−xj) whereh is the
Kernel, depends on at leastN +1 parameters.

Link between MEP and Maximum Likelihood (ML)

Considering the continuous case and the two following problems and their corre-
sponding solutions:



Data type 1: dk = E{φk(X)} =
∫

p(x)φk(x) dx, k = 1, · · · ,K

ME solution: p(x;λ) = 1
Z(λ)

exp
[
−
∑K

k=1 λkφk(x)
]

λ solution of: −∂ lnZ(λ)
∂λk

= dk, k = 1, · · · ,K

Data type 2:N direct samples: x = {x1, · · · ,xN}

Choosing a param. family: p(x;θ) = 1
Z(θ)

exp
[
−
∑K

k=1 θkφk(x)
]

and assumingxj iid: p(x;θ) =
∏N

j=1
1

Z(θ)
exp

[
−
∑K

k=1 θkφk(xj)
]

we can define the Likelihood:L(x|θ) = 1
Zn(θ)

exp
[
−
∑N

j=1

∑K

k=1 θkφk(xj)
]

and the maximum likelihood (ML) solution̂θ = argmaxθ {L(x|θ)} is given by:
−∂ lnZ(θ)

∂θk
= 1

n

∑N

j=1 φk(xj)
We can then easily see the link between the two problems. We may emphasize again

that this link is one of the properties of the expontential family of probability density
functions. See [7, 8, 9] for more details.

UPDATING PROBABILITIES

Updating a prior probability distribution to a posterior probability distribution concern-
ing a quantityX also depends on the nature of the new knowledge. Here too, we consider
two cases: i) a set of expected values and ii) a set of direct orindirect observations onX.
The main tool for the first is the Minimum Relative Entropy Principle (MREP) and the
Bayesian approach for the second. We then will see the link between the two approaches.

Minimum Relative Entropy Principle

The mathematical problem is stated as: Given the prior probabilities q and a set of
data type 1: dk = E{φk(X)} =

∑n

j=1pj φk(ωj), k = 1, · · · ,K , updateq to p.

The Minimum Relative Entropy Principle (MREP) writes:

minimizeK(p : q) =

n∑

j=1

pj lnpj/qj s.t.
n∑

j=1

pj φk(ωj) = dk, k = 1, · · · ,K

The solution is given by:

pj =
qj

Z(λ)
exp

[
−

K∑

k=1

λkφk(ωj)

]
whereZ(λ) =

∑

j

qj exp

[
−

K∑

k=1

λkφk(ωj)

]

For the continuous case, we have:

minimizeK(p : q) =

∫
p(x) ln

p(x)

q(x)
dx s.t.

∫
p(x)φk(x) dx = dk, k = 1, · · · ,K



and the solution is given by

p(x) =
q(x)

Z(λ)
exp

[
−

K∑

k=1

λkφk(x)

]
whereZ(λ) =

∫
q(x)exp

[
−

K∑

k=1

λkφk(x)

]
dx

More details can be found in the following works [10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

Bayesian approach

As in the ML approach, if we have a set of samplesx = {x1, · · · ,xN} of X for
which we have choosed a parametric familyp(x|θ) and a likelihood functionp(x|θ) =∏N

j=1 p(xj|θ) and if we also have some prior knowledge on the unknown parametersθ in
the form of a prior probabilityπ(θ), then the Bayesian approach consists in computing
the posterior probability

p(θ|x) =
π(θ) p(x|θ)

p(x)
=

π(θ) p(x|θ)∫
π(θ) p(x|θ) d(θ)

and then choosing an estimate forθ from this posterior. The general approach is to
choose a utility functionu(θ, θ̃), compute its expected valuēu(θ̃) =

∫
u(θ, θ̃) p(θ|x) dθ

and choose as a point estimatorθ̂ = argminθ̃

{
ū(θ̃)

}
.

Of particular interest is the case of exponential families for p(x|θ) and forπ(θ) for
which we can try to see some link between MRE and the Bayesian solutions.

Link between MKL and Bayesian approach

Considering the continuous case ofX with prior q(x|λ0) and the
Data type 1: dk = E{φk(X)} =

∫
p(x)φk(x) dx, k = 1, · · · ,K,

the MKL solution is given by

p(x|λ) =
q(x|λ0)

Z(λ)
exp

[
−

K∑

k=1

λkφk(x)

]

whereλ is the solution of: −
∂ lnZ(λ)

∂λk

= dk, k = 1, · · · ,K.

we note the relation between the prior and the posterior:

p(x|λ) ∝ q(x|λ0) exp

[

−

K∑

k=1

λkφk(x)

]

a posteriori ∝ a priori Data type 1 likelihood

Now, considering the
Data type 2: N direct samples: x = {x1, · · · ,xN}



with the following:

Choose a param. family: p(x|θ) = 1
Z(θ)

exp
[
−
∑K

k=1 θkφk(x)
]

Define the Likelihood: L(x|θ) = 1
Zn(θ)

exp
[
−
∑N

j=1

∑K

k=1 θkφk(xj)
]

Assign a prior on:θ π(θ|x0)

and applying Bayes rule, we have:

p(θ|x) ∝ π(θ|x0) exp

[

−

N∑

j=1

K∑

k=1

θkφk(xj)

]

a posteriori ∝ a priori Data type 2 likelihood

We can then compare the two approaches. However, we may note that in MKL, we have
a posterior lawp(x|λ) onx which is related to the prior lawq(x|λ0) and in the Bayesian
approach, we have a posterior lawp(θ|x) on θ which is related to the priorπ(θ|x0).
Note that we introducedq(x|λ0) andπ(θ|x0) for symmetry and for some more detailed
developments. To develop more deeply these relations, consider any point estimators of
θ such as:

the mean: θ̂ =
∫

θ p(θ|x) dx =
R

θ L(x|θ)π(θ) dx
R

L(x|θ)π(θ) dx

or the mode: θ̂ = argmaxθ {π(θ) L(x|θ)}

then, we can question ourselves on the signification ofp(x|θ̂) and its link with p(x|λ)
and a few more questions:

• How to assignq(x|λ0) or π(θ|x0) ?
• How to usep(x|λ) or p(θ|x) ?
• How to compute E{X} usingp(x|λ) or E{θ} usingp(θ|x) ?
• Any link betweenq(x|λ0) andπ(θ|x0) or betweenp(x|λ) andp(θ|x) ?

MULTIVARIATE EXTENSIONS

ConsiderX a random vector with pdfp(x), the priorq(x|λ0) and the Data type 1:

dk = E{φk(X)} =

∫
p(x)φk(x) dx, k = 1, · · · ,K

The ME and MKL relations can easily be extended to this multivariate case and we
have:

p(x|λ) ∝ q(x|λ0) exp

[
−

K∑

k=1

λkφk(x)

]

Then, the following properties can be established:

• Minimizing K(p : q) becomes equivalent to minimizing is a distance measure
D(λ;λ0) between the parametersλ and λ0 (Primal-Dual optimization), whose
expression depends onq(x|λ0);



• If q(x|λ0) is separable thenp(x|λ) is also separable;
• If we note by

Eq {X} =

∫
x q(x|λ0) dx = xq and Ep {X} =

∫
x p(x|λ) dx = xp

then minimizingK(p : q) −→ minimizing∆(xp : xq).

Now, we consider the Data type 3:M indirect samples:y = {y1, · · · ,yM} whereA
is aM ×N matrix andy = E{AX} = AE{X} and the prior measureq(x|λ0). Then,
again, it is easy to show that

p(x|λ) ∝ q(x|λ0) exp

[
−

K∑

k=1

λk[Ax]k)

]

and we have the following properties:

• Minimizing K(p : q) becomes equivalent to minimizingD(λ;λ0) and if we are
only interested on the mean valuesx, it can be obtained by minimizing a distance
measure∆(x : x0) betweenx andx0 subject to the data constraintsAx = y. The
expression of∆(x;x0) depends on the family form ofq(x|λ0);

• If q(x|λ0) is separable then∆(x;x0) =
∑N

j=1 ∆j(xj ;x0j);

• If q(x) is a Gaussian, thenD(λ;λ0) = ‖λ−λ0‖
2 and∆(x;x0) = ‖x−x0‖

2;
• If q(x) is a Poisson measure, then∆(x;x0) =

∑
j xj ln(xj/x0j)+(xj −x0j).

See [15, 16, 18, 19, 20] for more details.

BAYESIAN APPROACH FOR INVERSE PROBLEMS

Finally, we consider the Data type 4:M indirect samples:y = {y1, · · · ,yM} whereA is
aM ×N matrix andy = Ax+ǫ and the prior probability laws:

pǫ(ǫ|θ1) =
1

Z(θ1)
exp

[
−θt

1Q(ǫ)
]

and p(x|θ2) =
1

Z(θ2)
exp

[
−θt

2φ(x)
]

and we consider the problem of inferring onx and the hyperparametersθ1 andθ1. Here,
the appropriate tool is the Bayesian one.

The case whereθ1 and θ2 are known is now classical. We have to write down the
expression of the posterior

p(x|y, θ) = p(y|x, θ1) p(x|θ2)/p(y|θ), θ = (θ1, θ2)
where p(y|x, θ1) = pǫ(y−Ax|θ1)
and p(y|θ) =

∫
p(y|x, θ1) p(x|θ2) dx

and then inferx using:

Mode x̂(θ) = argmaxx{p(x|y, θ)} which needs optimization;

Mean x̂(θ) =
∫

x p(x|y, θ) dx =
R

x p(y|x,θ)p(x|θ) dx
R

p(y|x,θ)p(x|θ) dx
which needs integation;

Sampling x ∼ p(x|y, θ) which needs Monte Carlo techniques.



Whenθ1 andθ2 are unknown, then we have to write down the joint posterior:

p(x, θ|y) ∝ p(y|x, θ1) p(x|θ2) π(θ), θ = (θ1, θ2)

and then, depending on the final objective, do one of the following:

• inferring x : p(x|y) =
∫

p(x, θ|y) dθ
Mode x̂ = argmax

x
{p(x|y)}

Mean x̂ =
∫

x p(x|y) dx =
∫ ∫

x p(x, θ|y) dx dθ

• inferring θ : p(θ|y) =
∫

p(x, θ|y) dx

Mode θ̂ = argmax
θ

{p(θ|y)}

Mean θ̂ =
∫

θ p(θ|y) dθ =
∫ ∫

θ p(x, θ|y) dx dθ

• inferring (x, θ) : (x, θ) ∼ p(x, θ|y)

Joint MAP : (x̂, θ̂)= argmax
x,θ

{p(x, θ|y)}

Gibbs sampling : θ ∼ p(θ|x,y) −→ x ∼ p(x|θ,y) iterative
Joint sampling : θ ∼ p(θ|y) −→ x ∼ p(x|θ,y)

Looking at these relations:

p(θ,x|y) =
p(x|θ,y) p(y|θ) π(θ)

p(y)

p(θ|x,y) =
p(y|θ,x) p(x|θ)

p(y|θ)

p(θ|y) =
p(y|θ) π(θ)

p(y)

we see that a key term in all these relations is the incompletelikelihood (or evidence)
of the parametersp(y|θ) which is related to the complete likelihoodp(y,x|θ) by the
following integral equation

p(y|θ) =

∫
p(y,x|θ) dx =

∫
p(y|x, θ) p(x|θ) dx

which, unfortunately, excepted the Gaussian case, has not an analytical solution. Also,
noting that

lnp(y|θ) = ln

∫
q(x|θ′)

p(y,x|θ)

q(x|θ′)
dx

≥

∫
q(x|θ′) ln

p(y,x|θ)

q(x|θ′)
dx = H(q(x|θ′))+Eq(x|θ′){lnp(y,X|θ)}

which is valid for anyq(x|θ′) leads to the EM algorithm withq(x|θ′) = p(x|y, θ′) which
is the posterior law forx with the value of the parametersθ′ at previous iteration.



In the same way, we have

lnp(y) = ln

∫ ∫
q(x, θ)

p(y,x, θ)

q(x, θ)
dx dθ

≥

∫
q(x, θ) ln

p(y,x, θ)

q(x, θ)
dx = H(q(x, θ))+ 〈lnp(y,X,Θ)〉q(x,θ)

where〈lnp(y,X,Θ)〉q(x,θ) = Eq(x,θ) {lnp(y,X,Θ)}. This inequality relation will lead,
as we will see in the next section, to the variational Bayes whenq(x, θ) is choosed to be
separable, i.e;q(x, θ) = q1(x|y) q2(θ|y). See [13, 21, 22, 14, 15, 16, 17, 18, 19].

COMPUTATIONAL ASPECTS OF THE BAYESIAN APPROACH

Despite of the seemingly ever growing computing power, there are still problems (e.g.
in image processing) for which it is difficult to optimize or integrate or sample from
the joint posteriorp(x, θ|y). This constitutes a need for its approximatation by simpler
expressions. One of the classical tools is the Laplace approximation which can be a
valid one when this joint posterior is unimodal. The second classical one is separable
approximation or Variational Bayes which is summarized below.

Variational Bayes

The main idea here is thatp(x, θ|y) is not, in general, separable inx, θ neither in com-
ponents ofx nor in components ofθ. A first step then is to find two distributionsq1(x|y)
andq2(θ|y) such thatp(x, θ|y) can be approximated byp(x, θ|y) = q1(x|y) q2(θ|y).
Then all computations are easier usingq(x, θ|y) in place ofp(x, θ|y). The two free dis-
tributionsq1(x|y) andq2(θ|y) are then to be found such thatK (q1 q2 : p) or K (p : q1 q2)
be minimized. Writing the first one:

K (q1 q2 : p) =

∫ ∫
q1(x|y) q2(θ|y) ln

q1(x|y)q2(θ|y)

p(x, θ|y)
dx dθ

=

∫
q1(x|y)

(∫
q2(θ|y) ln

q1(x|y)q2(θ|y)

p(x, θ|y)
dθ

)
dx

=

∫
q2(θ|y)

(∫
q1(x|y) ln

q1(x|y)q2(θ|y)

p(x, θ|y)
dx

)
dθ

and noting thatK (q1 q2 : p) is a convex function ofq1 andq2, this optimization can be
done iteratively

q̂
(t+1)
1 (x|y) = argmin

q1

{
K
(
q1 q̂2

(t) : p
)}

=
1

Z1

exp
[
< lnp(x,y|Θ) >

q
(t)
2 (θ|y)

]

q̂
(t+1)
2 (θ|y) = argmin

q2

{
K
(
q̂
(t)
1 q2 : p

)}
=

π(θ)

Z2
exp

[
< lnp(X,y|θ) >

q
(t)
1 (x|y)

]



wheret notes the iteration number and< . >q mean the expectation overq. For more
details on this approach see [23, 24].

WHERE DO WE HAVE TO GO NOW?

The main idea in this tutorial was first to give a brief review of the main established
concepts. Now, the question is what are the directions to follow. Some of the different
aspects which will be discussed, I am sure, in this workshop are the following:

• There are still great place to the reserach on finding axioms needed to define
a quantity which will represents theinformation or the entropy. Depending on
different levels of those axioms, we may find different expressions for theentropy.
Then, it will be interesting to study more in details those expressions and solutions
we may obtain for assigning or updating probability distributions.

• As we could see in this paper, depending on the nature of the data we may have, the
tools for assigning or updating probability distributionsare different. More insights
and studies are still needed to establish and to interpret the possible links between
them.

I can also give here some directions in relation to the subjects on which my PhD
students and myself are interested. These subjects are related to the applied inverse
problems. Here, I summarize those directions:

• Forward modeling and assigning a probability law to the errors which leads us to
the likelihood expression is one of the crucial steps. In fact, choosing appropriate
unknown quantitiesx and appropriate observable quantitiesy and finding a simple
forward model:

y = A(x)+ǫ −→L(y|x, θ1) = qǫ(y−A(x)|θ1) = p(y|x, θ1)

relating them in such a way that the errorsǫ can be approximated to be independent
of x, centered, white and having an appropriate probability distribution is one of
the first and crucial steps for real applications. In engineering sciences, this can be
done through good knowledge of the physics of the problem. A few cases of such
linear or nonlinear modelings can be found in [18, 19, 25, 26,27].

• Modeling unknown quantitiesx and assigning probability laws:
Simple models: p(x|θ1)
Models with hidden variables: p(x|z, θ2), p(z|θ3)

Here, in general, we use Markovian models directly forp(x|θ1) or Hierarchical
Markovian models forp(x|z, θ2) and/or forp(z|θ3). A few cases of such linear or
nonlinear modelings can be found in [26, 27].

• Assigning prior laws to the hyperparametersp(θ):
For this step, we use often Jeffreys, Entropic [28, 29, 30, 31, 32, 33] or Conjugate
priors which are inter-related. For practical applications, the Conjugate priors have
been used with success in many applications.



• Obtaining expressions of the posterior laws

p(x, θ|y) ∝ p(y|x, θ1) p(x|θ2) π(θ), θ = (θ1, θ2)
p(x,z, θ|y) ∝ p(y|x, θ1) p(x|z, θ2) π(z|θ3) π(θ), θ = (θ1, θ2, θ3)

• Using posterior laws to give practical solutions:
From this point, the Bayesian interpretation gives us a lot of possibilities. For
summarizing the posterior, one can choose between Joint Modes, Means, Marginal
modes, or just sampling using the MCMC methods. However, we must be aware
that:

– Computing modes needs huge dimensional multivariate optimization;
– Computing means needs huge dimensional multivariate integration;
– Sampling is a good tool for exploring the whole probability density and com-

puting approximate means. However, sampling from a non-separable multi-
variate probability law is not so easy.

• Finding appropriate approximations to do fast computations:
Laplace approximation, Separable approximation, Variational and Mean Field ap-
proximations are the main tools.

• Evaluating the performances of the obtained algorithms is also one of the main
crucial points.

• Evaluating the uncertainties when a solution is given should not to be forgotten.
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