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Abstract. Assume a undirected gragghon a finite domainX and a probability distributio® on
X. Graph entropy, defined in terms of the vertex packing pplytds recast as

min =S s (R) (4.
H(G,P) =min > pilogP1™ (z;),

with suitably defined plausibility?!(?) wrt probability distributionR on the independent subsets
of G.

The plausibility which results from the minimisirigis called theplausibility wrt P on X serves
to define thegraph information distance

Pl
D(G,QIIP) = gilog Q

for two distributions) and P on X, given the graph structui@.

One verifies the usual properties of additivity and subadtjitwrt weak products of the sup-
porting graphs. The method of GraphMaxEnt can be formulatedrdingly. It is postulated that it
admits an axiomatisation akin to that for MaxEnt.

Applied to probability kinematics, it permits interpreagim wide range of probability reassign-
ments as the result of minimisation of graph informatiortatise. This leads to defining Jeffrey
rules for all these reassignments, along with inverseggtfonditioning.

MaxGraphEnt is often successful in including new condioinformation in situations when
the standard MaxEnt may produce unsatisfactory and cdohigive results. Such resolution,
using entropies, of ‘Private Benjamin problem’ is presdnte
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MOTIVATION

Entropy has been a favourite tool for probability kinemagicoblem. Although entropy
originated in communication theory, it soon found applmas in several other areas.
Principle of maximum entropy (and minimum information diste) was very success-
fully employed in decision making, hereupon in probabikigematics and, by exten-
sion, in general belief kinematics in AGM model [1, 3] of ledlrevision. Application of
these principles to probability revisions is discussedatad in our earlier paper [14].
MaxEnt principle easily leads tdefiningconditional distributions as well to Jeffrey
conditioning. It can also be adapted to resolve a problenneérse conditioning -
undoing the conditioning operation in the most ‘reasoniabbey. However, there are
important models of reassigning probability and beliefgin$ that do not conform to
the proportional re-weighting. They are known under the@afimaging and represent
a selective transfer of beliefs. Givéhon the universe of world§uwy, . .., w, } and a new



logical restrictionA such thatP; must be zero ow;,, ..., w,, we stipulate that each
of these worlds transfers its probability to a specific, mib&t-itself world; there is an
implicit graph structure that determines, for every where we are permitted to transfer
its weight of belief.

Under the AGM principles such process would be best justéigdgome minimal
change. Standard entropy cannot accomplish it, but itsneiig to graph entropy
succeeds.

A famous example of such situation is ‘Private Benjamin Reob posed by Bas van
Fraasen [16]. He uses it to question the suitability of gatr(standard) to revision of
probabilistic beliefs, not recognising that this is a pesblfor imaging and not just a
simple conditioning.

The presence of graph structure on the elements of the doacaords a certain
semantic structure to its domain. (In contradistinctiontr@py is ‘context-free’.) It
restricts the permissible flows of probability assignmelAteblem of van Fraasen has an
implicit, built-in semantic restriction; when modeled aaximisation of graph entropy,
the most natural solution ensues.

We propose to formalise this approach and formulate Grapiivie- a family of two
decision rules

+ Given constraints on probabilist values and a graph of gezthprobability trans-
fers, assume the distribution that maximises the correfipgrgraph entropy.

« In the above setting, if a prior distribution is known, thesperior distribution is
selected by minimising graph information distance.

While graph entropy [7] was already defined in 1973, infoioratlistance has not
been defined. We do it in this paper. Similarly, the decisidas based on graph entropy
are only defined here.

CONSTRUCTIVE DEFINITIONS

Shannon definition of entropy serves to measure variougsiion communication ca-
pacities in channels where outputs are error-free: synmrieoksived are unambiguous in
that no two outputs may ever be confused. Once the informatioutr; € X is trans-
mitted there is no doubt about the identity of that (Such a transmission or choice
from X is obviously subject to a probabilistic chance.) Allowiray Such confusion
shouldlower the entropy—indistinguishable elements could be, in aesansnsmitted
together. A formal model [7, 8] recognises graglon the verticegz;}, where an edge
(x;,x;) is formed whenever these two verti@snotbe confused. Thus the standard en-
tropy corresponds to the complete grajgh,» = | X|. Contrariwise, a fully confusable
arrangement consists afisolated vertices, with the presumed entropy 0.

Given the distributionP? on X, the definition of H (G, P) requires considering prob-
ability distributions on the collectio of the maximal independergets of vertices.

1 Independenmeans that no two vertices form an edge.



DenotingZ = {Y C X,Y- max ind}, we first need goint probability distributionS on
7 x X, such that

« SY,x)=0ifx ¢Y
+ S projected ontoX is preciselyP
Let R be its projection ontd@. We put

H(G, P) =min(H(P)+ H(R) — H(S)).

Although the expression may seem convoluted, it is actupllte easy to work with; in
particular, there is a simple algorithm finding the minimgs5 and computing the en-
tropy. There is an equivalent definition due to Simonyi [Ilsed on the notion ekrtex
packing polytopeThis is less suitable for computations, but better for galisations.
However, it can be recast into a very useful formula usingititeon of plausibility. With
notation as above, we first consider arbitrary probabiliggribution R defined orZ and

put
PI®(z)= Y R(Y).

Y:zeY

We have a fairly easy result
H(G. P) = mi Toa PI®) (4.
(G,P) 1in E pilog P1YY (x;).

It holds thatR that minimises the expression above is the same distribagon Korner
and Simonyi [15] definitions. We use it to define fhlausibility wrt P on X

Plp(z) =P1®(z), R=argminH(G,P).
It serves to define thgraph information divergence

Pl@ i)
()

for two distributions) and P on X, given a (fixed) graph structur@. It is straightfor-
ward to offer a similar definition wrt the change@f but it produces useful results only
in restricted cases.

D(G,Q||P) Zqzlog

GRAPH ENTROPY COMPUTATIONS

We discuss here the question of obtaineigsed formexpressions for fairly simple
graphs. The problem of numerical solutions, whether foplentropy or graph distance
is easily tractable by any better package for convex opétitia. For our purposes, esp.
to compute graph information distance, one would like toehpist one probability
distribution on independent subsets that would minimise ékpression required to
define graph entropy. It is always the case - we reiterater;, &fmonyi [15] that entropy



computation has always a unique minimising argument. Itmae¢at when probability
distribution on vertices i§) and on independent setsisthen

. B . A (R), ..
argm}%nH(G,Q) = argmin qu log Pl ()

is uniquely defined.

A similar argument applies to the case when probabilityrifistion on vertices
remaingy), while plausibility is computed wrt distributioR giving a unique minimising
argument

. _ (R)(,.
arg min > q;log Pl ().
Lastly, the distance is the difference of these solutions
D(G,Q||P) = =) _glogPlp(z;) — H(G,Q).

We start by demonstrating that even the original definitiasdal on forming explicitly
a joint distribution onV'(G) and J - set of all independent maximal sets, is quite
workable. We recall that we need to forfh- joint probability on (V) supported
on incident pairs
S(v,[):OvagéI, Su:P

Then we can define probability ofi as projectior() := S|, and find
H(G,P)= msin(H(P) +H(Q)—H(9))= mSinI(P, Q).

We are now ready to look at few examples.

J \V ‘ b1 P2 P3
{p1,p2} |p1 p2 O
J p {ps} |0 0 ps3

2

H(G) = H(P)+H(Q)—-H(S)
H(p1,p2,p3) +H(p1+p2,p3) — H(p1,p2,p3)
—(p1+p2)log(p1 +p2) —pslogps

3

j\v ‘pl P2 D3

{p1,ps} |p1 0 =
B P, {p2sp3} | 0 p2 gy




Underz +y = ps the solution toargmin, ,~ (H (p1 +z,p2 +y) — H(p1,p2,x,y)) be-
comes _ _D1ps y = P2p3
p1+p2’ D1+ P2
For comparison, computations based on plausibility arg oné line long

r
J = Aprgry, I="P(pr), 11 =P(qr)
H = min(—plogl —qloglI—rlog(I+1I1I))
b q
= —plo —qlo

and the companion case

-

J = Apqg,r}, I="P(pq),I1="P(r)
H = min(—(p+q)logl —rlogll
p - q = —plog(p+q) —qlog(p+q) —rlogr
We can confirm thaf{; - complete graph on three vertices indeed has the entropy-
splitting property (it is perfect), as the sum of these twiv@pies is the ordinary Shannon

entropy on(p,q,r).
For four vertices most cases are easily handled; for example
r S

J = Aps.qr}
H = min(—(p+s)logl —(q+7)loglI)
p = —(p+s)log(p+s)—(g+7)log(g+r)
q
' * 'S H = H(p,q,T,S)—H(G)

= —pl —ql c —rl ! —sl i
(0] O 10 S10
plog s q gq r gq r g S

However, we arrive for the first time at a more difficult caseewltomputing

B J = A{pa,ps.qr}
p qH(G) = min(—plog(I+1I)—qlog(I+III)—rloglII—slogll)

If pg <rs, the minimum lies on the boundary= 0, giving

H=—(p+s)log(p+s)—(qg+7r)log(qg+r)



For the caseq > rs we first compute? (G) and take advantage of the splitting property
of K4, namelyH (G) = H(p,q,r,s) — H(G). We find

r

H(G) = —plog —qlog —rlog —slog

p+r q+s p+r q+s

APPLYING GRAPH-MAX-ENT

Ordinary conditioning can be justified in a number of ways, [13], all leading to the
same numerical result

Di

=——  1<i<k<n
it ok

/
pi ’

which can be obtained as
argmin D(P'||P)

subject only toy_ p! = 1; the solution is unique ang > p;.

When a graph structure is present, thus probability transtricted, even defining
the conditional assignment becomes nontrivial. We profgdsetreated along the lines
of minimum change principle and demonstrate how graph pigsoead to attractive
results. We present these in symbolic form, so as to be alagttact some insight into
the conditioning process.

For the general case one should require

Pi > pi;

still the solution may be nonunique, leading to only parthgpecified probabilities. This
is due to a 'free’ transfer of mass between the nondistifglike nodes.

The results can usually be interpreted as various forms afjing [9, 10, 11]. An
extreme case is the completely disconnected graph wheresraye indistinguishable;
then all entropies and distances are

For the first case we take a three element distribytiens,¢ = £, = 1 and aim to
reducer — 0.

"1/2
»_ q
D = plog Zf/rg +qlog T/rg
1/3+1/6 1/3+1/6
1/3————1/6

Lagrange multipliers givé = ¢, thus the new values become= %,q = % which
represents a proportional allocatioryaio the other nodes.



To reducep — 0 requires imposing a boundary conditigrmust remain> % Now

"1/2
D =qlog3
/13— 1/6

andp is transfered te: r = 2. Companion cases are handled similarly. Consider the
request to reduce — 0, hencey’ + ¢’ = 1 for the graph

r

/+ ! /+ /
D = qlogZL 4 ¢10gZ"L = _log(p+q)
p+q q

p+
p - q

Minimising distanceD tells us only thap’ > p, ¢’ > ¢q. However, both reducing— 0
and minimisingD = ¢'log (q’/ﬁ) +7'log ™ gives a unique answef =p+q, v’ =r.

CONCLUDING EXAMPLE

A somewhat controversial issue is the suitability of emyrégr conditionalisation based
itself on conditional premises [4, 16]. A prototypical sition is usually framed as the
JB problem (after the film ‘Private (Judy) Benjamin’). In os@ene there JB commands
a unit that becomes totally lost during the military games.van Fraasen puts it, she
is totally disoriented and assigns (implicitly) probaﬂyili}l to being in any of the four
sectors

« BH: ‘Blue’ headquarters - friendly area
« B2 ‘Blue’ support - also friendly

« RH: ‘Red’ headquarters - enemy

+ R2 ‘Red’ support - also hostile

Her aim is to secure thBH sector. She receives a garbled radio message “...if in Red
area, it is3 +— 1 that you are in the Headquarters area ...” Receiving a messiag
needs to reassess the probabilities sofdtH | RH \V R2) = 0.75. The intuitive answer

(1,12 1) preservingndependencbetween the ‘Red’ and ‘Blue’ states, does not follow

fr20r$1 tghe8 use of any unstructured entropy. A direct condaloeasoning [4] restores the
independence, but cannot be reduced to the basic MaxEnt.

We show that the ‘obvious’ answer is obtained if the entropyanincompletegraph
is used. It appears that similar ‘successes’ can be geddi@tenajority of like cases.
However, it is the ease of creating such solutions that castagainst the automatic
use of entropy as theormativedecision rule. The JB problem is tackled by omitting

a specific edge from the complete graph. This can be giveniealdgasis, but it feels



more like an explanatioex postand suggests that the MaxEnt and MinInf are best kept
asdescriptive rulesoccasional successes to the contrary notwithstanding Tt&ir
prescriptive use would require a supporting logical frarmethat could decidex ante

on choice of the graph of ‘information’ transfers.

We recover the answer bygmovingthe edge(RH, R2) from the interconnection
graph. It can be justified as the explication of the fact thates RH and R2 can be
confusedWe feel it is best viewed as simply explaining the successrap@ViaxEnt in
this instance.
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