
GraphMaxEnt

Arthur Ramer

School of Computer Science and Engineering
University of New South Wales

Sydney 2052, Australia

Abstract. Assume a undirected graphG on a finite domainX and a probability distributionP on
X . Graph entropy, defined in terms of the vertex packing polytope, is recast as

H(G,P ) = min
R

−
∑

pi logPl(R)(xi),

with suitably defined plausibilityPl(R) wrt probability distributionR on the independent subsets
of G.

The plausibility which results from the minimisingR is called theplausibility wrtP onX serves
to define thegraph information distance

D(G,Q||P ) =
∑

qi log
PlQ(xi)

PlP (xi)

for two distributionsQ andP onX , given the graph structureG.
One verifies the usual properties of additivity and subadditivity wrt weak products of the sup-

porting graphs. The method of GraphMaxEnt can be formulatedaccordingly. It is postulated that it
admits an axiomatisation akin to that for MaxEnt.

Applied to probability kinematics, it permits interpreting a wide range of probability reassign-
ments as the result of minimisation of graph information distance. This leads to defining Jeffrey
rules for all these reassignments, along with inverse Jeffrey conditioning.

MaxGraphEnt is often successful in including new conditional information in situations when
the standard MaxEnt may produce unsatisfactory and counterintuitive results. Such resolution,
using entropies, of ‘Private Benjamin problem’ is presented.
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MOTIVATION

Entropy has been a favourite tool for probability kinematics problem. Although entropy
originated in communication theory, it soon found applications in several other areas.
Principle of maximum entropy (and minimum information distance) was very success-
fully employed in decision making, hereupon in probabilitykinematics and, by exten-
sion, in general belief kinematics in AGM model [1, 3] of belief revision. Application of
these principles to probability revisions is discussed in detail in our earlier paper [14].

MaxEnt principle easily leads todefiningconditional distributions as well to Jeffrey
conditioning. It can also be adapted to resolve a problem of inverse conditioning -
undoing the conditioning operation in the most ‘reasonable’ way. However, there are
important models of reassigning probability and belief weights that do not conform to
the proportional re-weighting. They are known under the name of imaging, and represent
a selective transfer of beliefs. GivenP on the universe of worlds{w1, . . . ,wn} and a new



logical restrictionA such thatP+
A must be zero onwk+1, . . . ,wn, we stipulate that each

of these worlds transfers its probability to a specific, most-like-itself world; there is an
implicit graph structure that determines, for everywi, where we are permitted to transfer
its weight of belief.

Under the AGM principles such process would be best justifiedas some minimal
change. Standard entropy cannot accomplish it, but its extension to graph entropy
succeeds.

A famous example of such situation is ‘Private Benjamin Problem’ posed by Bas van
Fraasen [16]. He uses it to question the suitability of entropy (standard) to revision of
probabilistic beliefs, not recognising that this is a problem for imaging and not just a
simple conditioning.

The presence of graph structure on the elements of the domainaccords a certain
semantic structure to its domain. (In contradistinction, entropy is ‘context-free’.) It
restricts the permissible flows of probability assignments. Problem of van Fraasen has an
implicit, built-in semantic restriction; when modeled as maximisation of graph entropy,
the most natural solution ensues.

We propose to formalise this approach and formulate GraphMaxEnt - a family of two
decision rules

• Given constraints on probabilist values and a graph of permitted probability trans-
fers, assume the distribution that maximises the corresponding graph entropy.

• In the above setting, if a prior distribution is known, the posterior distribution is
selected by minimising graph information distance.

While graph entropy [7] was already defined in 1973, information distance has not
been defined. We do it in this paper. Similarly, the decision rules based on graph entropy
are only defined here.

CONSTRUCTIVE DEFINITIONS

Shannon definition of entropy serves to measure various limits on communication ca-
pacities in channels where outputs are error-free: symbolsreceived are unambiguous in
that no two outputs may ever be confused. Once the information aboutxi ∈ X is trans-
mitted there is no doubt about the identity of thatxi. (Such a transmission or choice
from X is obviously subject to a probabilistic chance.) Allowing for such confusion
shouldlower the entropy—indistinguishable elements could be, in a sense, transmitted
together. A formal model [7, 8] recognises graphG on the vertices{xi}, where an edge
(xi,xj) is formed whenever these two verticescannotbe confused. Thus the standard en-
tropy corresponds to the complete graphKn,n = |X|. Contrariwise, a fully confusable
arrangement consists ofn isolated vertices, with the presumed entropy 0.

Given the distributionP on X, the definition ofH(G,P ) requires considering prob-
ability distributions on the collectionI of the maximal independentsets of vertices.1

1 Independentmeans that no two vertices form an edge.



DenotingI = {Y ⊆ X,Y - max ind}, we first need ajoint probability distributionS on
I ×X, such that

• S(Y,x) = 0 if x /∈ Y

• S projected ontoX is preciselyP

Let R be its projection ontoI. We put

H(G,P ) = min
S

(H(P )+H(R)−H(S)).

Although the expression may seem convoluted, it is actuallyquite easy to work with; in
particular, there is a simple algorithm finding the minimisingS and computing the en-
tropy. There is an equivalent definition due to Simonyi [15],based on the notion ofvertex
packing polytope. This is less suitable for computations, but better for generalisations.
However, it can be recast into a very useful formula using thenotion of plausibility. With
notation as above, we first consider arbitrary probability distributionR defined onI and
put

Pl(R)(x) =
∑

Y :x∈Y

R(Y ).

We have a fairly easy result

H(G,P ) = min
R

−
∑

pi logPl(R)(xi).

It holds thatR that minimises the expression above is the same distribution as in Korner
and Simonyi [15] definitions. We use it to define theplausibility wrtP onX

PlP (x) = Pl(R)(x), R = argminH(G,P ).

It serves to define thegraph information divergence

D(G,Q||P ) =
∑

qi log
PlQ(xi)

PlP (xi)

for two distributionsQ andP on X, given a (fixed) graph structureG. It is straightfor-
ward to offer a similar definition wrt the change ofG, but it produces useful results only
in restricted cases.

GRAPH ENTROPY COMPUTATIONS

We discuss here the question of obtainingclosed formexpressions for fairly simple
graphs. The problem of numerical solutions, whether for graph entropy or graph distance
is easily tractable by any better package for convex optimisation. For our purposes, esp.
to compute graph information distance, one would like to have just one probability
distribution on independent subsets that would minimise the expression required to
define graph entropy. It is always the case - we reiterate, after Simonyi [15] that entropy



computation has always a unique minimising argument. It means that when probability
distribution on vertices isQ and on independent sets isR then

argmin
R

H(G,Q) = argmin
R

−
∑

qi logPl
(R)
Q (xi)

is uniquely defined.
A similar argument applies to the case when probability distribution on vertices

remainsQ, while plausibility is computed wrt distributionP giving a unique minimising
argument

argmin
R

−
∑

qi logPl
(R)
P (xi).

Lastly, the distance is the difference of these solutions

D(G,Q||P ) = −
∑

qi logPlP (xi)−H(G,Q).

We start by demonstrating that even the original definition based on forming explicitly
a joint distribution onV (G) and J - set of all independent maximal sets, is quite
workable. We recall that we need to formS - joint probability on(V,J ) supported
on incident pairs

S(v,I) = 0 if v /∈ I, S↓1 = P

Then we can define probability onJ as projectionQ := S↓2 and find

H(G,P ) = min
S

(H(P )+H(Q)−H(S)) = min
S

I(P,Q).

We are now ready to look at few examples.

J
∖

V p1 p2 p3

{p1,p2} p1 p2 0
{p3} 0 0 p3

H(G) = H(P )+H(Q)−H(S)

= H(p1,p2,p3)+H(p1 +p2,p3)−H(p1,p2,p3)

= −(p1 +p2) log(p1 +p2)−p3 logp3

J
∖

V p1 p2 p3

{p1,p3} p1 0 x
{p2,p3} 0 p2 y



Underx+ y = p3 the solution toargmin<x,y>(H(p1 +x,p2 + y)−H(p1,p2,x,y)) be-
comes

x =
p1p3

p1 +p2

, y =
p2p3

p1 +p2

For comparison, computations based on plausibility are only one line long

r

p q

J = {pr,qr}, I = P(pr), II = P(qr)

H = min(−p log I − q logII − r log(I + II))

= −p log
p

p+ q
− q log

q

p+ q
and the companion case

p q

r

J = {pq,r}, I = P(pq), II = P(r)

H = min(−(p+ q) logI − r logII

= −p log(p+ q)− q log(p+ q)− r logr

We can confirm thatK3 - complete graph on three vertices indeed has the entropy-
splitting property (it is perfect), as the sum of these two entropies is the ordinary Shannon
entropy on(p,q,r).

For four vertices most cases are easily handled; for example

p q

r s
J = {ps,qr}

H = min(−(p+ s) logI − (q + r) logII)

= −(p+ s) log(p+ s)− (q + r) log(q + r)

r s

p q

H = H(p,q,r,s)−H(Ḡ)

= −p log
p

p+ s
− q log

q

q + r
− r log

r

q + r
−s log

s

p+ s

However, we arrive for the first time at a more difficult case when computing

p q

r s

J = {pq,ps,qr}

H(G) = min(−p log(I + II)− q log(I + III)− r logIII −s log II)

If pq ≤ rs, the minimum lies on the boundaryI = 0, giving

H = −(p+ s) log(p+ s)− (q + r) log(q + r)



For the casepq ≥ rs we first computeH(Ḡ) and take advantage of the splitting property
of K4, namelyH(G) = H(p,q,r,s)−H(Ḡ). We find

H(G) = −p log
p

p+ r
− q log

q

q + s
− r log

r

p+ r
−s log

s

q + s

APPLYING GRAPH-MAX-ENT

Ordinary conditioning can be justified in a number of ways [13, 17], all leading to the
same numerical result

p′i =
pi

p1 + . . .+pk

, 1 ≤ i ≤ k < n

which can be obtained as
argminD(P ′‖P )

subject only to
∑

p′i = 1; the solution is unique andp′i ≥ pi.
When a graph structure is present, thus probability transfer restricted, even defining

the conditional assignment becomes nontrivial. We proposeit be treated along the lines
of minimum change principle and demonstrate how graph entropies lead to attractive
results. We present these in symbolic form, so as to be able toextract some insight into
the conditioning process.

For the general case one should require

p′i ≥ pi;

still the solution may be nonunique, leading to only partly unspecified probabilities. This
is due to a ’free’ transfer of mass between the nondistinguishable nodes.

The results can usually be interpreted as various forms of imaging [9, 10, 11]. An
extreme case is the completely disconnected graph where nodes are indistinguishable;
then all entropies and distances are0.

For the first case we take a three element distributionp = 1
3
, q = 1

6
, r = 1

2
and aim to

reducer → 0.

1/2

1/61/3

D = p log

p
p+q

1/3
1/3+1/6

+ q log

q
p+q

1/6
1/3+1/6

Lagrange multipliers givep
2

= q, thus the new values becomep = 2
3
, q = 1

3
, which

represents a proportional allocation ofr to the other nodes.



To reducep → 0 requires imposing a boundary condition:q must remain≥ 1
6
. Now

1/2

1/61/3

D = q log3

andp is transfered tor: r = 5
6
. Companion cases are handled similarly. Consider the

request to reducer → 0, hencep′ + q′ = 1 for the graph

p q

r

D = q′ log
p′ + q′

p+ q
+ q′ log

p′ + q′

p+ q
= − log(p+ q)

Minimising distanceD tells us only thatp′ ≥ p, q′ ≥ q. However, both reducingp→ 0
and minimisingD = q′ log (q′/ q

p+q
)+ r′ log r′

r
gives a unique answerq′ = p+ q, r′ = r.

CONCLUDING EXAMPLE

A somewhat controversial issue is the suitability of entropy for conditionalisation based
itself on conditional premises [4, 16]. A prototypical situation is usually framed as the
JB problem (after the film ‘Private (Judy) Benjamin’). In onescene there JB commands
a unit that becomes totally lost during the military games. As van Fraasen puts it, she
is totally disoriented and assigns (implicitly) probability 1

4
to being in any of the four

sectors

• BH: ‘Blue’ headquarters - friendly area
• B2: ‘Blue’ support - also friendly
• RH: ‘Red’ headquarters - enemy
• R2: ‘Red’ support - also hostile

Her aim is to secure theRH sector. She receives a garbled radio message “. . . if in Red
area, it is3÷ 1 that you are in the Headquarters area . . . ” Receiving a message she
needs to reassess the probabilities so thatP (RH|RH∨R2) = 0.75. The intuitive answer
(1

2
, 1

2
, 3

8
, 1

8
) preservingindependencebetween the ‘Red’ and ‘Blue’ states, does not follow

from the use of any unstructured entropy. A direct conditional reasoning [4] restores the
independence, but cannot be reduced to the basic MaxEnt.

We show that the ‘obvious’ answer is obtained if the entropy on anincompletegraph
is used. It appears that similar ‘successes’ can be generated for majority of like cases.
However, it is the ease of creating such solutions that cautions against the automatic
use of entropy as thenormativedecision rule. The JB problem is tackled by omitting
a specific edge from the complete graph. This can be given a logical basis, but it feels



more like an explanationex post, and suggests that the MaxEnt and MinInf are best kept
as descriptive rules, occasional successes to the contrary notwithstanding [12]. Their
prescriptive use would require a supporting logical framework that could decideex ante
on choice of the graph of ‘information’ transfers.

We recover the answer byremovingthe edge(RH,R2) from the interconnection
graph. It can be justified as the explication of the fact that states RH and R2 can be
confused.We feel it is best viewed as simply explaining the success of GraphMaxEnt in
this instance.
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