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Abstract. The author’s past work in this area has shown that the probability of a state of a 

Bayesian network, found using the standard Bayesian techniques, could be equated to the 

Maximum Entropy solution and that this result enabled us to find minimally prejudiced 

estimates of missing information in Bayesian networks. In this paper we show that in the class of 

Bayesian networks known as Bayesian trees, we are able to determine missing constraint values 

optimally using only the maximum entropy formalism. Bayesian networks that are specified 

entirely within the maximum entropy formalism, whether or not information is missing, are 

called generalized Bayesian networks. It is expected that further work will fully generalize this 

result. 
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INTRODUCTION 

One of the major drawbacks of using Bayesian networks is that complete 

information, in the form of marginal and conditional probabilities must be specified 

before the usual updating algorithms are applied. Holmes [1] has shown that when all 

or some of this information is missing, it is possible to determine unbiased estimates 

using maximum entropy. The techniques thus developed depend on the property that 

the probability of a state of a fully-specified Bayesian network, found using the 

standard Bayesian techniques, can be equated to the maximum entropy solution. A 

fully-constrained Bayesian network is clearly a special case, both theoretically and 

practically, and a general theory has yet to be provided. As a first step toward a 

general theory a generalized Bayesian network is defined as one in which some, all or 

none of the essential information is missing. It is then shown that missing information 

can be estimated using the maximum entropy formalism (MaxEnt) alone, thus 

divorcing these results from their dependence on Bayesian techniques.   

The techniques required for the current problem are substantially different to those 

used previously in that, although we still use the method of undetermined multipliers, 

we no longer equate the joint probability distributions given by the Bayesian and 

maximum entropy models in order to determine the Lagrange multipliers.  Two 

preliminary results are described here. Firstly, we extend the 2-valued work of Holmes 

[2] and of Markham and Rhodes [3] by developing an iterative algorithm for updating 

probabilities in a multivalued multiway tree, Secondly, we use the Lagrange multiplier 



           

 

technique to find the probability of an arbitrary state in a Bayesian tree using only 

MaxEnt. We begin by defining a Bayesian network. 

BAYESIAN NETWORKS  

A Bayesian network is essentially a system of constraints; those constraints being 

determined by d-separation. Formally, a Bayesian network is defined as follows.  Let: 

 

(i)  V be a finite set of vertices 

(ii)  B be a set of directed edges between vertices with no feedback loops. The 

vertices together with the directed edges form a directed acyclic graph 

G = V,B   

(iii)  a set of events be depicted by the vertices of G and hence also represented by 

V, each event having a finite set of mutually exclusive outcomes 

(iv)  Ei be a variable which can take any of the outcomes j

i
e of the event ,  1...

i
i j n=  

(v)  P be a probability distribution over the combinations of events, i.e. P consists 

 of all possible i

i

P E
∈

 
 
 V

∩ . 

 

Let C be the following set of constraints: 

 

(2i) the elements of P sum to unity. 

(2ii) for each event i with a set of parents Mi  there  are associated conditional 

 probabilities |
i

i j

j M

P E E
∈

 
  
 
∩  for each possible outcome that can be 

assigned to 
i

E and 
j

E . 

(2iii) those independence relationships implied by d-separation in the directed 

 acyclic graph. 

 

Then =N G,P,C  is a causal network if P satisfies C. 

 

In a Bayesian network the property of d-separation identifies all the constraints as 

independencies and dependencies. In classical Bayesian network theory a prior 

distribution must be specified in order to apply the updating algorithms developed, for 

example, by Pearl [4] or Lauritzen and Spiegalhalter [5].   By working with the same 

set of constraints as those implied by d-separation, the MaxEnt formalism provides a 

means of determining the prior distribution when information is missing. The author 

has previously shown that the MaxEnt model with complete information is identical to 

the Bayesian model and has used this property to estimate the optimal prior 

distribution when information is missing. We now show that the MaxEnt model is not 

dependent on the Bayesian model for a class of Bayesian networks.  



           

 

A GENERALIZED BAYESIAN NETWORK WITH MAXIMUM 

ENTROPY 

Consider the knowledge domain represented by a set, K, of multivalued events ia .  

Associated with each event is a variable
vE . The general state S of the causal tree is the 

conjunction 
v

v

E
∈V

∩ . A particular state is obtained by assigning some j

v
e  to each vE . It 

is assumed that the probability of a state is non-zero. The number of states NS in the 

tree is given by: 

S i

i

N n
∈

= ∏
V

 

 

where ni is the number of values possessed by the ith event. States are numbered from 

1,..., SN  and denoted by : 1,...,i SS i N= , and the probability of a state is denoted 

by ( )iP S . To determine a minimally prejudiced probability distribution P, using the 

maximum entropy formalism, we maximize 

 

                                                  
1

( ) ln ( )
sN

i i

i

H P S P S
=

= −∑                                             (1.1) 

 

in accordance with the constraints implied by d-separation. These constraints are given 

in the form of marginal or conditional probabilities that represent the current state of 

knowledge of the domain.  

 

Let a sufficient set of constraints be denoted by C, where each constraint 
jC ∈C . 

Each constraint is assigned a unique Lagrange multiplier jλ , where j represents the 

subscripts corresponding to the events on the associated edge. For the edge 1 1,a b , 

the Lagrange multipliers are ( ) ( ) ( )1 1 1 2

1 1 1 1 1 1, , , ,..., ,  m pb a b a b aλ λ λ where event 1a  has p 

outcomes and event 
1b has m outcomes. Without loss of generality we consider the 

constraints arising from a typical edge 1 1,a b thus:  

 

                             ( ) ( )| ,           1,..., ;     1,...,j i

b a j i S
P e e b a i N j mβ= = =                     (1.2) 

 

Since P is a probability distribution we also require the normalization constraint: 

 

                                                    
1

( ) 1
sN

i

i

P S
=

=∑                                                            (1.3) 

 

The Lagrange multiplier 0λ is associated with the sum to unity. Applying the theory of 

Lagrange multipliers transforms the problem into that of maximizing: 



           

 

 

                                                  
 

j j

all j

F H Cλ= −∑                                                      (1.4) 

 

By partially differentiating (1.4) with respect to ( )iP S  and
j

λ , we see that the 

contribution to the expression for a maximum from H is given by: 

 

                                    ( )1 ln ( )     1,...,i SP S i N− + =                                                  (1.5) 

Similarly, the contribution made by each causal constraint and the sum to unity to the 

expression for a maximum is given by   

 

                                           

1,...,

0
( )

j

s

j

j

C C i
i N

C

P S
λ

∈
=

∂
− =

∂
∑                                                       (1.6) 

 

resulting in a combined expression: 

 

                                 ( )
1,...,

1 ln ( ) 0
( )

j

s

j

i j

C C i
i N

C
P S

P S
λ

∈
=

∂
− + − =

∂
∑                                        (1.7) 

and hence 

                                 ( )1

1,...,

( ) exp
( )

j

s

j

i j

C C i
i N

C
P S e

P S
λ−

∈
=

∂ 
= − 

∂ 
∏                                        (1.8) 

 

In order to further consider the probability of a state, as given in (1.8), we first need to 

transform the given constraints into expressions containing the sums of probabilities 

of states.  These causal constraints given in (1.2) are thus expressed in the form: 

 

                            ( )( ) ( ) ( ) ( )1 1 1 11 , , 0j i j i

x y

x X y Y

b a P S b a P Sβ β
∈ ∈

− − =∑ ∑                         (1.9)   

 

where ( ) ( )
1 1

| i j

x a b

x

X x P S P e e
 

= = 
 
∑  and ( ) ( )

1 1

1

|
k m

i k

y a b

y k
k j

Y y P S P e e
=

=
≠

 
 

= = 
 
 

∑ ∑  

 

This defines a family of constraint equations for the arbitrary edge
1 1,a b . The root 

node is a special case of equations (1.2) since the information is given in the form of 

marginal probabilities and hence they need not be considered separately.  

 

Substituting (1.8) into (1.9) gives: 



           

 

( )( ) ( ) ( ) ( )
1 11 1

1 1 1 1, ,
1 , exp , exp 0

( ) ( )
j i j i

j j

j jj i j i

b a b a
x X y YC C C Cx y

C C
b a b a

P S P S
β λ β λ

∈ ∈∈ ∈

 ∂ ∂ 
− − − − =    ∂ ∂   

∑ ∑∏ ∏  

(1.10) 

 

Now consider the probability of the state with event 1a  instantiated with its ith 

outcome and event 1b with its jth outcome, denoted by ( )
11 ,

j i
b a

P S . We see that 

when x X∈ , ( )
11 ,

j i
b a

P S  contains the expression: 

( )( ) ( )( )( )1 1 1 1exp , 1 ,j i j i
b a b aλ β− −  

Similarly, when y Y∈ ,  ( )
11 ,

j ib a
P S   contains the terms: 

( )( ) ( )( ) ( )( )( )
1

1 1 1 1 1 1

1

exp , exp , ,
k m

j i k i k i

k

b a b a b aλ λ β
= −

=

− − −∏  

Hence ( )
11 ,

j i
b a

P S  contains the terms 

( )( ) ( )( )( ) ( )( ) ( )( )( )
1

1 1 1 1 1 1 1 1

1

exp , 1 , exp , ,
k m

j i j i k i k i

k
k j

b a b a b a b aλ β λ β
= −

=
≠

− − − −∏  

arising from the edge 1 1,a b . Re-arranging gives 

 

( )( )( ) ( ) ( )( )( )
1

1 1 1 1 1 1

1

exp , exp , ,
k m

j i k i k i

k

b a b a b aλ λ β
= −

=

− − −∏  

 

Since this constraint is typical we see that for all states belonging to X x∈ : 

 

                                  ( )( ) ( )( )( )1 1 1 1
exp , 1 ,j i j ib a b aλ β− −                                           (1.11) 

and for all states belonging toY y∈ : 

 

                   ( )( ) ( )( ) ( )( )( )
1

1 1 1 1 1 1

1

exp , exp , ,
k m

j i k i k i

k

b a b a b aλ λ β
= −

=

− − −∏                           (1.12) 

 

From equations (1.11) and (1.12) we see that (1.10) becomes: 

 

( )( ) ( )( ) ( )

( ) ( )

11

,
1 1

11

,
1 1

1 1 1 1 ,

1 1 ,

exp , 1 , exp
( )

, exp 0
( )

j i

j j i
b a

j i

j j i
b a

jj i j i

b a
x X C C x

jj i

b a
y Y C C y

C
b a b a

P S

C
b a

P S

λ β λ

β λ

 
 
 

 
 
 

∈ ∈ −

∈ ∈ −

∂ 
− − − − 

∂ 

 ∂
− =  ∂ 

∑ ∏

∑ ∏

C

C

 



           

 

 

and hence 

 

( )( )
( ) ( )

( )( ) ( )

11

,
1 1

11

,
1 1

1 1 ,

1 1

1 1 ,

, exp
( )

exp ,

1 , exp
( )

j i

j j ib a

j i

j j ib a

jj i

b a
y Y C C y

j i

jj i

b a
x X C C x

C
b a

P S

b a
C

b a
P S

β λ

λ

β λ

 
 
 

 
 
 

∈ ∈ −

∈ ∈ −

 ∂
−  ∂ 

− =
∂ 

− − 
∂ 

∑ ∏

∑ ∏

C

C

 

(1.13) 

This expression enables us to update Lagrange multipliers using an iterative algorithm. 

However, as we show in the next section, we can solve for the Lagrange multipliers 

algebraically, thus producing a solution identical to that given in earlier papers, using 

techniques outside of the MaxEnt formalism. See for example, Holmes [6] 

SOLVING FOR THE LAGRANGE MULTIPLIERS: EXAMPLE   

For the purposes of illustration we consider a three valued causal binary tree with 

three nodes A, B and C.  Let 

 

{ } { } { }1 2 3 1 2 3 1 2 3,  ,  a a a a b b b b c c c cE e e e E e e e E e e e= = =  

 

denote the outcomes of events a, b and c respectively, which are mutually exclusive 

and collectively exhaustive. The required information, given by conditional 

probabilities associated with each outcome, is as follows: 

 
26

0

( ) 1   (constraint 0)

( ) ( );  1,2;   (constraints 1 and 2)

( | ) ( ),  ( | ) ( );   1,2,3;  1,2;  (constraints 3 - 8)

( | ) ( ),  ( | ) ( );   1,2,3;  

i

i

i

a i

j i j i

b a j i b a j i

j i j i

c a j i c a j i

P S

P e a i

P e e b a P e e b a i j

P e e c a P e e c a i j

α

β β

β β

=

=

= =

= = = =

= = =

∑

1,2;  (constraints 9 - 14)=

 

(1.14) 

This system can be in any of 27 states, labeled 0-26, as follows: 

 
1 1 1

0 a:  
b c

S e e e  1 1 2

1 a:  
b c

S e e e  1 1 3

2 a:  
b c

S e e e  1 2 1

3 a:  
b c

S e e e  1 2 2

4 a:  
b c

S e e e  1 2 3

5 a:  
b c

S e e e  

1 3 1

6 a:  b cS e e e  1 3 2

7 a:  b cS e e e  1 3 3

8 a:  b cS e e e     

 

The remaining states are similarly defined but with 2

a aE e=  for states 9 – 17 and 

3

a a
E e=  for states 18 – 26.  Each constraint in (1.14) can be expressed in terms of state 

probabilities, as in (1.9). For example, constraint 3 gives: 

 



           

 

       ( )1 1 1 1

0,1,2 3,4,5 6,7,8

1 ( ) ( ) ( ) ( ) ( ) 0i i i

i i i

b a P S b a P S P Sβ β
= = =

 
− − + = 

 
∑ ∑ ∑                       (1.15) 

 

In (1.14), sets X and Y as defined in (1.9), contain states 3,4,5 and 6,7,8 respectively. 

Using the equation for probability of a state given by (1.6) together with (1.15) 

enables us to find the values of all the Lagrange multipliers. Expanding (1.15) and 

simplifying gives an expression for 3exp( )λ− in terms of known information, together 

with certain unknown Lagrange multipliers thus: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 1
3

1 1

4 5 6 4 5 4 6

5 6

( )
exp( )

1 ( )

1 exp exp exp exp exp exp exp

1 exp exp

b a

b a

β
λ

β

λ λ λ λ λ λ λ

λ λ

 
− = × 

− 

 + − + − + − + − − + − −
  + − + − 

     

 

(1.16) 

Following the same procedure but with 

 

               ( )2 1 2 1

3,4,5 0,1,2 6,7,8

1 ( ) ( ) ( ) ( ) ( ) 0i i i

i i i

b a P S b a P S P Sβ β
= = =

 
− − + = 

 
∑ ∑ ∑              (1.17)              

leads to 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2 1
4

2 1

3 5 6 3 5 3 6

5 6

( )
exp( )

1 ( )

1 exp exp exp exp exp exp exp

1 exp exp

b a

b a

β
λ

β

λ λ λ λ λ λ λ

λ λ

 
− = × 

− 

 + − + − + − + − − + − −
  + − + − 

         

 

 (1.18) 

 

Using equations (1.16) and (1.17) we find, by factorization and substitution, that: 

 

             ( )1 1 2 1
3 3

1 1 2 1

( ) ( )
exp( ) 1 1 exp( )

1 ( ) 1 ( )

b a b a

b a b a

β β
λ λ

β β

  
− = + + −  

− −  
                          (1.19) 

hence 

 

                
( )( )

1 1
3

1 1 2 1 2 1 1 1

( )
exp( )

( ) ( ) 1 ( ) 1 ( )

b a

b a b a b a b a

β
λ

β β β β
− =

+ − −
                          (1.20) 

 

and so 



           

 

                                                 1 1
3

3 1

( )
exp( )

( )

b a

b a

β
λ

β
− =                                                 (1.21) 

 

The remaining Lagrange multipliers are found similarly, and so the probability of each 

state can be determined. 

REMARKS 

For the class of Bayesian networks discussed here, the non-linear independence 

constraints implied by d-separation are preserved by the maximum entropy formalism 

and do not need to be explicitly stated.  

Having shown how to find the Lagrange multipliers and thus the probability of each 

state, methods previously developed by Holmes and Rhodes [1] can be used to 

determine missing information since these depend only on the maximum entropy 

formalism. We have seen in this paper how to derive expressions for estimating 

missing information in tree-like Bayesian networks without equating the maximum 

entropy and Bayesian models. 

The next step in the current project will be to develop the theory required to deal 

with the non-linear constraints inherent in singly connected networks without recourse 

to methods outside of the maximum entropy formalism. 
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