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Blind Source Separation (BSS) 
General Statement of the problem

The seminal work on blind source separation is by Jutten, Herault and Guerin (1988). During the last two 
decades, many algorithms for source separation were introduced, specially for the case of independent 
sources reaching to the so called Independent Component Analysis (ICA). Generally speaking the purpose 
of BSS is to obtain the best estimates of P input signals (s) from their M observed linear mixtures (x) .

mixtures sourcesMixing 
matrix (MxP)

In the noiseless case (n=0), obtaining sources estimates (    ) is a linear problem:

xs †A=ˆ

Sources signals are assumed with zero-mean and unit-variance. We consider here the overdetermined case 
(M>=P)

The Linear Mixing Model:

†AWhere          is the Moore-Penrose inverse matrix

Note: When noise is present, a non-linear estimator is required.
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• A precise mathematical framework for ICA (noiseless case) was stated by P. Comon (1994). He has 
shown that if at most one source is Gaussian then ICA problem can be solved, has explained the 
permutation indeterminacy, etc.
• Many algorithms were developed by researches using the concept of contrast functions (objective 
functions to be minimized) mainly based on approximations to Mutual Information-MI measure is defined as 
follows through the Kullback-Leibler distance:

Independent Sources (ICA)

Note that, if all source estimate       are independent, then   and
Marginal densityJoint density

Existing ICA/BSS algorithms

By minimizing Mutual Information

• P. Comon algorithm (1994);
• InfoMax (1995) by Sejnowski et al;
• FastIca (1999) by Hyvärinen;
• R. Boscolo algorithm (2004); 
• and many others.

By exploiting the time structure of sources
Second and High Order statistics (SOS-HOS)

•AMUSE (1990) by L. Tong et al;
• JadeTD (2002) by . Georgiev et al (based on the JADE 
algorithm – Cardoso (1993))
• SOBI (1993) by A. Belouchrani et al;
• EVD (2001) by P . Georgiev and A. Cichocki; and others.
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DCA (Dependent Component Analysis)
How can we separate Dependent Sources?

• Few algorithms for dependent sources were reported in the literature. Cichocki et al. (2000) have 
approached the separation of acoustic signals by exploiting their time correlations. Bedini et al. (2005) have 
developed an algorithm based on 2nd order statistics at different time lags for astrophysical images.

• As we have experimentally demonstrated in a recent paper (Caiafa et al. 2006), when sources are 
allowed to be dependent, the minimization of the entropies of the non-Gaussian source estimates remains 
as an useful tool for the separation, while the minimization of MI fails. 

• We introduce the term DCA (Dependent Component Analysis) for a method which obtains the non-
Gaussian source estimates by minimizing their entropies allowing them to be cross correlated (dependent).

• This DCA method has demonstrated to be effective on several real world signals exhibiting even high 
degree of cross correlation (see examples of speech signals in Caiafa et al. (SPARS05 ) – 2005, 
Hyperspectral images in Caiafa et. al (EUSIPCO06 - 2006), and dependent signals taken from satellite 
images in Caiafa et al. (Signal Processing) in press (2006)).
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Linear
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Increase Gaussianity / Entropy

INPUT:
Independent

Sources
(unit-variance)

OUTPUT:
Mixtures

(unit-variance)

• In ICA context, many authors have shown that minimizing 
MI of sources is equivalent to minimize the Entropy of the 
non-Gaussian source estimates. It is a consequence of 
Central Limit Theorem (P. Comon, A. Hyvärinen).
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Entropic measures

Considering a continuous random variable y (with zero-mean and unit-variance), we define the following 
Entropic measures:

Shannon Entropy (SE):

Gaussianity Measure (GM):

with the Gaussian pdf defined as ussually by:

By the Central Limit Theorem (CLT) effect, a linear combination of independent variables has a higher 
Entropic measure (SE and GM) value than individual variables.

Generalizations of the CLT for dependent variables allows us to base our method in these two measures.
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• Given a set of N samples of the variable y: y(0), y(1),.., y(N-1), Parzen windows is a non parametric 
technique for the estimation of the corresponding pdf:

where:      is a window function (or kernel), for example a Gaussian function, and 
h   is as the parameter which affects the width and height of the windows functions

Calculation of Entropic Measures by using Parzen Windows

• Shannon Entropy and Gaussianity Measure can be written in terms of data samples:

Notes: 
• The advantage of having an analytical expressions for these measures, is that we are able 
to analytically calculate derivatives for searching the local maxima.

• Parzen window estimation technique also allows us to implement the calculations in a fast way 
by calculating convolutions through the Fast Fourier Transform (FFT) (Silverman (1985))
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The astrophysical problem
The Planck Surveyor Satellite mission

Assumptions:

Planck Telescope
(on a satellite) SOURCES: - CMB (Cosmic microwave Background)

- DUST (Thermal Dust)
- SYN (Galactic Synchrotron)

MIXTURES
Sensor Measurements at 

different center frequencies:
(100 GHz, 70 GHz, 44 GHz and 30 GHz)

A1: CMB images are Gaussian, DUST and SYN images are non-Gaussian.
A2: CMB-DUST and CMB-SYN are uncorrelated pairs. (DUST-SYN are usually correlated)
A3: We consider low level noise (source estimates can be obtained as linear combination of mixtures)

Objective: To obtain estimates of CMB, DUST and SYN images (sources) by using the 
available measurements (mixtures).
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The MiniMax Entropy algorithm for the astrophysical case
• By using the low level noise assumption (A3), the source estimates are:

• In order to enforce source estimates to have unit-variance, we first apply a whitening (or sphering) filter and we 
define a new separating matrix which can be parameterized with spherical coordinates:

with        (Karhunen Loeve Transformation)

• Covariance Matrices are: 

• Then, each row of matrix         has unit-norm and therefore can be parameterized by using spherical 
coordinates:

• And every source estimate can be obtained by identifying the appropriate points in the parameter space
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The MiniMax Entropy method steps
Minimum Entropy STEP: We seek for the local minima of the Entropic measure (SE or GM) as a function of 
the separating parameters                 . These set of parameter are associated with Minimum Entropy sources 
(SYN and DUST). See Figure.
Maximum Entropy STEP: We seek for the maximum of the Entropic measure (SE or GM) which is associated 
with the only Gaussian source (CMB). See Figure.
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Using uncorrelateness for enhancing CMB estimate
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Experimental Results on simulated data
Example of the Noiseless case (using Shannon Entropy)

We have synthetically generated the mixture from simulated CMB, SYN and DUST images (256x256 pixels).

Correlations:

CMB SYN DUST Estimated CMB
 SIR = 13.6 dB

Estimated SYN
 SIR = 31.9 dB

Estimated DUST
  SIR = 21.4 dB

Mixture 0 Mixture 1 Mixture 2 Mixture 3
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Experimental Results on simulated data
Comparison with FastICA

The following table presents the results of applying our method (with SE and GM as entropic measures) together 
with the results of FastICA for a set of 15 patches.
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Robustness against noise
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We have analyzed the sensitivity of the separation matrix estimation to Gaussian noise. As the level of noise is 
increased the Shannon Entropy (and the Gaussianity Measure) surfaces tends to be flatter and local extrema
are more difficult to be detected.
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Conclusions
• Shannon Entropy (SE) and Gaussianity Measure (GM) have proved to be useful for separating dependent 
sources.

• A new algorithm based on these Entropic Measures was developed for the separation of potentially 
dependent astrophysical sources showing better performance than the classical ICA approach (FastICA).

• Our technique was demonstrated to be reasonably robust to low level additive Gaussian noise.

Discussion about future directions
• The theoretical basement for Minimum Entropy methods is an open issue for dependent source case.

• An extension to a noisy model should be investigated. The present technique provides an estimation of 
the separating matrix but a non linear estimator should be developed for recovering sources.

• Separation of other source of radiation in astrophysical images need to be investigated.

• This technique should be tested also for the separation of sources from real mixtures (when available).


