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Goal: estimating the peak parameters (locations, amplitudes and widths) in a spectrum.
[1 Provide an interpretation for physico-chemists.

[1 Bayesian approach + MCMC method.
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1. Problem Formulation

Marked point process: finite set of objects lying in a bounded space and characterized by

their locations and some marks.

[1 Blind sparse spike train deconvolution

bl A =l

— Bernoulli-Gaussian process W|despread model for sparse spike trains)

Drawbacks:
e common implementation with MCMC methods not efficient

e peaks located on discrete positions

e one peak shape

[] Decomposition into elementary patterns

N ALAMA

— Yy = Zkz 1 nk7wkask
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2. Proposed Model
2.1 A Constant Dimension Model

K

Yy = Z f(nkawka Sk) + €
k=1

Problem: peak number unknown
= system order likely to change!

LI MCMC techniques for model uncertainty (RIMCMC algorithm, ...)

[J  Constant Dimension Model
peak number equals to constant K. (upper bound fixed by the user).
Bernoulli-Gaussian model — q ~ Ber(\) codes the peak occurrences:

e i = 1: the kth peak is present (at ng with amplitude wj and width s;)
e i = 0: the kth peak is not present

= Yy = Z f(nkawkask) + e

(1 variable number smaller than a common BG implementation (3K .x vs. N).
[J allows to use Gibbs sampler
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2. Proposed Model
2.2 Prior distributions

Noise:
white, Gaussian and i.i.d. e ~ N(0,7])

Peak Location:
uniformly distributed on [1, N] ng ~ U N

Peak Amplitude:
BG process + positive amplitudes qr ~ Ber(\)
50(Wk) If qr — 0

Wi Qg ~ |
N+(O,TW) ii qr — 1

Peak Width:

inverse gamma with mean 6 cm™! sk ~ IG(as, Bs)

and variance 2.5 cm—!
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2. Proposed Model
2.2 Prior distributions

[1 Hyperparameters:

Bernoulli parameter:

conjugate prior to penalize high values

Peak Amplitude Variance:

conjugate prior less informative as possible

Noise variance:

Jeffreys prior
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2. Proposed Model

2.3 Conditional Posterior distributions

Peak Location: ngl... ~ exp( e

K 2
Zl max f(nl,Wl,Sl)H ) 11[17N](nk)

Peak Amplitude: qk|... ~ Ber(\)

00(W) if g, =0
Wk| el n _
N (pk, pr) if qp =1
. K % ﬁ 1
Peak Width: il o~ exp (ke ||y — i f W s)|| - 2 ) g (se)
e Sy

Bernoulli parameter: Ao~ Be(K +1,2K 0 — K + 1)

Peak Amplitude Variance: rw|-.. ~ IG (% + o, iQW + ﬁw)

2
. . K
Noise variance: re|l... ~ IG (%,% Hy — > 0% f(ny, wy, Sl)H >
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2. Proposed Model

2.4 Peak Location Simulation

1
ngl... ~ exp <_2_re

2
y — Zz[ir?ax f(nl,Wl,SZ)H ) L1, ny(ng)

Metropolis-Hastings algorithm  —  which proposal distribution?

(1 If the peak is present (qr = 1)
define precisely its location: N[l’N](ng_l),rn)

(] If the peak is absent (qx = 0)
explore the entire space: U, N

= q(ny) = do(ar)Up, Ny + 51 (q) NN (@Y 7).
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3. Label Switching

The label switching problem is due to 2 phenomena:

e same posterior for all permutation of k:  p(61, 02, 05y) = p(62,03,041]y)

e Gibbs sampler able to explore the k! permutation possibilities

iterations

01 = 4.26, 0y =434, 03=2.41
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3. Label Switching

Proposed Method
Minimizing the following cost function (see [Stephens 1997]):

Kmax

EO(na W, S, Uny Pns Uwy Pws Us, pS) = —In H N(nkllu'nka pnk)N(Wk|ka7 ka)N(Sk’““LSk) psk)
k=1

Major differences to general relabelling algorithms:

e initialization obtained by selecting the maximum in the histogram of (i, fiw, jis)
(closer to the global optimum than a simple identity permutation)

e relabelling (n;, w;, s;) one after the other (no permutation)

e taking into account the fact that the peak number is expected to change
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3. Label Switching

KMMAP
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4. Application
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[J 10,000 iterations (burn-in period of 5,000 iterations).
L1 Initialization: spectrum with no peak, A0 =0.5, r‘(,g) — 10, 'réo) = 0.1.
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Conclusion

[] Signal decomposition into elementary patterns (marked point process)
Alternative to blind sparse spike train deconvolution

e more efficient than a common implementation with BG model
e peaks located on a continuous space

e peak with different shapes

[1 Constant dimension model
Alternative to RIMCMC

[1 New method for label switching

e initialization close to the global optimum using an histogram
e relabelling with no permutation

e the variable number may change
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