Jean-François Bercher

July 13, 2006

Background

└- Tsallis' entropy

Background

Tsallis entropy

$$H_{\alpha}(P) = \frac{1}{1-\alpha} \left[\int P(x)^{\alpha} dx - 1 \right],$$

was introduced in 1988 for multifractals. It is *nonextensive* $H_{\alpha}(X+Y) \neq H_{\alpha}(X) + H_{\alpha}(Y)$ when *X* and *Y* are independent. Strange property? It generalizes Shannon/Boltzmann entropy (as others):

$$\lim_{\alpha\to 1}H_{\alpha}(P)=S(P).$$

Tsallis literature: 88 → now more than 1000 papers

Background	
L Power laws	

 When maximized under mean constraint, it leads to power laws

$$\begin{cases} \max_{P} H_{\alpha}(P) \\ \text{s.t. } \bar{E} = \int \varepsilon P(\varepsilon) d\varepsilon \end{cases}$$

Background		
Power laws		

 When maximized under mean constraint, it leads to power laws

$$\begin{cases} \max_{P} H_{\alpha}(P) \\ \text{s.t. } \bar{E} = \int \varepsilon P(\varepsilon) d\varepsilon \end{cases} \implies P = K(1 + \gamma \varepsilon)^{\nu} \simeq K \varepsilon^{\nu}$$

Background

- Power laws
 - When maximized under mean constraint, it leads to power laws

$$\begin{cases} \max_{P} H_{\alpha}(P) \\ \text{s.t. } \bar{E} = \int \varepsilon P(\varepsilon) d\varepsilon \end{cases} \implies P = K(1 + \gamma \varepsilon)^{\nu} \simeq K \varepsilon^{\nu}$$

And power laws are *interesting* as they appear in turbulence, fractals, ...

Often, power laws also meet long dependence phenomena (with unclear connexions).

Background

- Power laws
 - When maximized under mean constraint, it leads to power laws

$$\begin{cases} \max_{P} H_{\alpha}(P) \\ \text{s.t. } \bar{E} = \int \varepsilon P(\varepsilon) d\varepsilon \end{cases} \implies P = K(1 + \gamma \varepsilon)^{\nu} \simeq K \varepsilon^{\nu}$$

And power laws are *interesting* as they appear in turbulence, fractals, ...

Often, power laws also meet long dependence phenomena (with unclear connexions).

Fluctuating equilibriums

$$P(\varepsilon) \propto e^{-\varepsilon/kT} \quad \stackrel{T \sim \gamma}{\longrightarrow}$$

-Background

- Power laws
 - When maximized under mean constraint, it leads to power laws

$$\begin{cases} \max_{P} H_{\alpha}(P) \\ \text{s.t. } \bar{E} = \int \varepsilon P(\varepsilon) d\varepsilon \end{cases} \implies P = K(1 + \gamma \varepsilon)^{\nu} \simeq K \varepsilon^{\nu}$$

And power laws are *interesting* as they appear in turbulence, fractals, ...

Often, power laws also meet long dependence phenomena (with unclear connexions).

Fluctuating equilibriums

$$P(\varepsilon) \propto e^{-\varepsilon/kT} \quad \stackrel{T \sim \gamma}{\longrightarrow} \quad P(\varepsilon) \propto (1 + \gamma(\varepsilon - \bar{E}))^{\nu}$$

Background

Constraints

Constraints

- Three choices for MaxTEnt
 - Tsallis (88)

Background

Constraints

Constraints

Three choices for MaxTEnt

Tsallis (88)

$$\begin{cases} \max_{P} H_{\alpha}(P) \\ \text{s.t. } \bar{E} = \int \varepsilon P(\varepsilon) d\varepsilon \end{cases}$$
 Classical mean

Background

Constraints

Constraints

- Three choices for MaxTEnt
 - Tsallis (88)

$$\begin{cases} \max_{P} H_{\alpha}(P) \\ \text{s.t. } \bar{E} = \int \varepsilon P(\varepsilon) d\varepsilon \end{cases}$$
 Classical mean

Q Curado-Tsallis (91)

$$\begin{cases} \max_{P} H_{\alpha}(P) \\ \text{s.t. } \bar{E} = \int \varepsilon P(\varepsilon)^{\alpha} d\varepsilon \end{cases}$$

Background

└- Constraints

Constraints

- Three choices for MaxTEnt
 - Tsallis (88)

$$\begin{cases} \max_{P} H_{\alpha}(P) \\ \text{s.t. } \bar{E} = \int \varepsilon P(\varepsilon) d\varepsilon \end{cases}$$
 Classical mean

Q Curado-Tsallis (91)

 $\begin{cases} \max_{P} H_{\alpha}(P) \\ \text{s.t. } \bar{E} = \int \varepsilon P(\varepsilon)^{\alpha} d\varepsilon \end{cases}$

Isallis-Mendes-Plastino (98)

$$\begin{cases} \max_{P} H_{\alpha}(P) \\ \text{s.t. } \bar{E} = \int \varepsilon \times \frac{P(\varepsilon)^{\alpha}}{\int P(\varepsilon)^{\alpha} d\varepsilon} d\varepsilon \end{cases}$$
 Generalized mean

Outline

Outline

Maximization of Rényi-Tsallis entropy can be argued as the minimum of Kullback-Leibler divergence (Shannon *Q*-entropy) under a constraint that model a displacement from conventional equilibrium

Outline

Outline

- Maximization of Rényi-Tsallis entropy can be argued as the minimum of Kullback-Leibler divergence (Shannon *Q*-entropy) under a constraint that model a displacement from conventional equilibrium
- 2 Two scenarii for the observation constraint are relevant, that lead to (i) classical mean constraint (ii) generalized mean constraint

-Outline

Outline

- Maximization of Rényi-Tsallis entropy can be argued as the minimum of Kullback-Leibler divergence (Shannon *Q*-entropy) under a constraint that model a displacement from conventional equilibrium
- 2 Two scenarii for the observation constraint are relevant, that lead to (i) classical mean constraint (ii) generalized mean constraint
- Oetermination of law parameter. We will find something like

$$P(\varepsilon) \propto (1 + \gamma(\varepsilon - \overline{\varepsilon}))^{\nu}$$

That is *self-referential*. \rightarrow efficient procedures for determining γ .

-Outline

Outline

- Maximization of Rényi-Tsallis entropy can be argued as the minimum of Kullback-Leibler divergence (Shannon *Q*-entropy) under a constraint that model a displacement from conventional equilibrium
- 2 Two scenarii for the observation constraint are relevant, that lead to (i) classical mean constraint (ii) generalized mean constraint
- Oetermination of law parameter. We will find something like

$$P(\varepsilon) \propto (1 + \gamma(\varepsilon - \bar{\varepsilon}))^{\nu}$$

That is *self-referential*. \rightarrow efficient procedures for determining γ .

④ Special cases → well known entropies

Outline

Outline

- Maximization of Rényi-Tsallis entropy can be argued as the minimum of Kullback-Leibler divergence (Shannon *Q*-entropy) under a constraint that model a displacement from conventional equilibrium
- 2 Two scenarii for the observation constraint are relevant, that lead to (i) classical mean constraint (ii) generalized mean constraint
- Oetermination of law parameter. We will find something like

$$P(\varepsilon) \propto (1 + \gamma(\varepsilon - \overline{\varepsilon}))^{\nu}$$

That is *self-referential*. \rightarrow efficient procedures for determining γ .

- ④ Special cases → well known entropies
- 6 Legendre structure and thermodynamics

-Q-entropies and divergences

Q-entropies and divergences

$$H(P) = -\sum_{\mathscr{D}} P(x) \log P(x)$$

do not pass easily to the continuous case (no invariance). Correct extension (Shannon 48, Jaynes 63, Kullback 51)

$$H_Q(P) = -\int_{\mathscr{D}} P(x) \log \frac{P(x)}{Q(x)} dx = -D(P||Q)$$

Generalization

$$\begin{cases} \text{Rényi } \frac{1}{1-\alpha} \log \int P^{\alpha} dx & D_{\alpha}(P||Q) = \frac{1}{1-\alpha} \log \int P^{\alpha} Q^{1-\alpha} dx \\ \text{Tsallis } \frac{1}{1-\alpha} \left[\int P^{\alpha} dx - 1 \right] & \frac{1}{1-\alpha} \left[\int P^{\alpha} Q^{1-\alpha} dx - 1 \right] \end{cases}$$

Rényi and Tsallis entropy have the same maxima

Rationale for Rényi-Tsallis maximum Q-entropy

In statistics, Sanov theorem or entropy concentration theorem are the rationale for MaxEnt. If one has a mean constraint and generates sequences according to Q, then the most probable (set of) distribution is the nearest to Q, compatible with the constraint, in the Kullback-Leibler sense.

Rationale for Rényi-Tsallis maximum Q-entropy

In statistics, Sanov theorem or entropy concentration theorem are the rationale for MaxEnt. If one has a mean constraint and generates sequences according to *Q*, then the most probable (set of) distribution is the nearest to *Q*, compatible with the constraint, in the Kullback-Leibler sense.

And there exist an overwhelmingly preponderant distribution:

$$\hat{P}_{ME} / \begin{cases} \min_{P} D(P||Q) \\ \text{s.t.} \ m = E_{P}[X] \end{cases}$$

But minimization of Tsallis-Rényi divergence gives a different distribution \hat{P}_{α} that is absolutely improbable...

Rationale for Rényi-Tsallis maximum Q-entropy

In statistics, Sanov theorem or entropy concentration theorem are the rationale for MaxEnt. If one has a mean constraint and generates sequences according to *Q*, then the most probable (set of) distribution is the nearest to *Q*, compatible with the constraint, in the Kullback-Leibler sense.

And there exist an overwhelmingly preponderant distribution:

$$\hat{P}_{ME} / \begin{cases} \min_{P} D(P||Q) \\ \text{s.t.} \ m = E_{P}[X] \end{cases}$$

But minimization of Tsallis-Rényi divergence gives a different distribution \hat{P}_{α} that is absolutely improbable...

~ Another probabilistic justification?

-Rationale for Rényi-Tsallis maximum Q-entropy

Displaced equilibriums

Displaced equilibriums

Fluctuations of an intensive parameter \equiv modified/perturbated "classical" equilibrium. Instead of selecting the nearest distribution to Q, one selects the nearest to Q but also to P_1 : the equilibrium distribution is somewhere between P_1 and Q

With $D(P||Q) = D(P||P_1) + \theta$

- -Rationale for Rényi-Tsallis maximum Q-entropy
- Displaced equilibriums

Displaced equilibriums

Fluctuations of an intensive parameter \equiv modified/perturbated "classical" equilibrium. Instead of selecting the nearest distribution to Q, one selects the nearest to Q but also to P_1 : the equilibrium distribution is somewhere between P_1 and Q

With
$$D(P||Q) = D(P||P_1) + \theta$$

 $(\min_{P_1} D(P||Q))$

s.t.
$$\theta = D(P||Q) - D(P||P_1)$$

Displaced equilibriums

Displaced equilibriums

Fluctuations of an intensive parameter \equiv modified/perturbated "classical" equilibrium. Instead of selecting the nearest distribution to Q, one selects the nearest to Q but also to P_1 : the equilibrium distribution is somewhere between P_1 and Q

With $D(P||Q) = D(P||P_1) + \theta$

 $\begin{cases} \min_{P} D(P||Q) \\ s.t. \quad \theta = D(P||Q) - D(P||P_1) \end{cases}$

$$\theta = \int P(x) \log \frac{P_1(x)}{Q(x)} dx$$

is the mean log-likelihood.

- Rationale for Rényi-Tsallis maximum *Q*-entropy
 - └- Observables

Observables

We also have an observable

- $m = E_{P_1}[X] = \int x P_1(x) dx$ mean of subsystem (A)
- 2 $m = E_{P^*}[X] = \int x P^*(x) dx$ mean of global system (A,B)

 $\begin{cases} \min_{P} D(P||Q) = \min_{P} \int P(x) \log \frac{P(x)}{Q(x)} dx \\ \text{subject to: } \theta = \int P(x) \log \frac{P_1(x)}{Q(x)} dx \end{cases}$

Rationale for Rényi-Tsallis maximum *Q*-entropy

Observables

Observables

We also have an observable

1
$$m = E_{P_1}[X] = \int x P_1(x) dx$$
 mean of subsystem (A)

2
$$m = E_{P^*}[X] = \int x P^*(x) dx$$
 mean of global system (A,B)

$$K = \begin{cases} \min_{P_1} \begin{cases} \min_{P} D(P||Q) = \min_{P} \int P(x) \log \frac{P(x)}{Q(x)} dx \\ \text{subject to: } \theta = \int P(x) \log \frac{P_1(x)}{Q(x)} dx \\ \text{subject to: } m = E_{P_1}[X] \text{ or } m = E_{P^*}[X] \end{cases}$$

Rationale for Rényi-Tsallis maximum *Q*-entropy

Solution

Solution to the first problem

 $\begin{cases} \min_{P} D(P||Q) \\ s.t \ \theta = D(P||Q) - D(P||P_1) \end{cases}$

Rationale for Rényi-Tsallis maximum *Q*-entropy

Solution

Solution to the first problem

 $\begin{cases} \min_{P} D(P||Q) \\ s.t \ \theta = D(P||Q) - D(P||P_1) \end{cases}$

Solution: (Kullback59)

$$P^*(x) = \frac{P_1(x)^{\alpha}Q(x)^{1-\alpha}}{\int P_1(x)^{\alpha}Q(x)^{1-\alpha}dx},$$

→ Escort distribution of nonextensive statistics

- *P** which is the geometric mean between *P*₁ and *Q* realizes a trade-off, governed by α, between the two references.
- Note that m = E_{P*}[X] is the 'generalized α-expectation' and has a clear meaning now!

Rationale for Rényi-Tsallis maximum *Q*-entropy

Solution

Optimum Lagrange parameter

The parameter α is simply the Lagrange parameter associated to the constraint θ , $\alpha \leq 1$, and is given by

$$\alpha^*/ \sup_{\alpha} \left\{ \alpha \theta - \log \left(\int P_1(x)^{\alpha} Q(x)^{1-\alpha} dx \right) \right\}$$

$$K_1 = \begin{cases} \min_P D(P||Q) \\ s.t \ \theta = D(P||Q) - D(P||P_1) \end{cases}$$
$$= \alpha^* \theta - \log\left(\int P_1(x)^{\alpha^*} Q(x)^{1-\alpha^*} dx\right)$$

Solution

And the maximization of Rényi Q-entropy...

$$K = \begin{cases} \min_{P_1} \begin{cases} \min_{P} D(P||Q) = \min_{P} \int P(x) \log \frac{P(x)}{Q(x)} dx \\ \text{subject to: } \theta = \int P(x) \log \frac{P_1(x)}{Q(x)} dx \\ \text{subject to: } m = E_{P_1}[X] \text{ or } m = E_{P^*}[X] \end{cases}$$

Solution

And the maximization of Rényi Q-entropy...

$$K = \begin{cases} \min_{P_1} \begin{cases} \sup_{\alpha} \left\{ \alpha \theta - \log\left(\int P_1(x)^{\alpha} Q(x)^{1-\alpha} dx \right) \right\} \\ \text{by dual attainment} \\ \text{subject to: } m = E_{P_1}[X] \text{ or } m = E_{P^*}[X] \end{cases}$$

Rationale for Rényi-Tsallis maximum *Q*-entropy

Solution

And the maximization of Rényi Q-entropy...

$$K = \begin{cases} \min_{P_1} \begin{cases} \sup_{\alpha} \{ \alpha \theta - \underbrace{\log\left(\int P_1(x)^{\alpha} Q(x)^{1-\alpha} dx\right)}_{(\alpha-1)D_{\alpha}(P_1||Q)} \\ \text{subject to: } m = E_{P_1}[X] \text{ or } m = E_{P^*}[X] \end{cases}$$

Rationale for Rényi-Tsallis maximum *Q*-entropy

Solution

And the maximization of Rényi Q-entropy...

$$K = \begin{cases} \min_{P_1} \begin{cases} \sup_{\alpha} \{ \alpha \theta - \underbrace{\log\left(\int P_1(x)^{\alpha} Q(x)^{1-\alpha} dx\right)}_{(\alpha-1)D_{\alpha}(P_1||Q)} \\ \text{subject to: } m = E_{P_1}[X] \text{ or } m = E_{P^*}[X] \end{cases}$$

and

$$K = \sup_{\alpha} \begin{cases} \alpha \theta + (1 - \alpha) \min_{P_1} \begin{cases} D_{\alpha}(P_1 || Q) \\ \text{subject to:} \ m = E_{P_1}[X] \text{ or } m = E_{P^*}[X] \end{cases}$$

Amounts to the minimization of Rényi/Tsallis divergence!

Rationale for Rényi-Tsallis maximum *Q*-entropy

Solution

And the maximization of Rényi Q-entropy...

$$K = \begin{cases} \min_{P_1} \begin{cases} \sup_{\alpha} \{ \alpha \theta - \underbrace{\log\left(\int P_1(x)^{\alpha} Q(x)^{1-\alpha} dx\right)}_{(\alpha-1)D_{\alpha}(P_1||Q)} \end{cases} \\ \text{subject to: } m = E_{P_1}[X] \text{ or } m = E_{P^*}[X] \end{cases}$$

and

$$K = \sup_{\alpha} \left\{ \alpha \theta + (1 - \alpha) \min_{P_1} \left\{ \begin{array}{c} D_{\alpha}(P_1 | | Q) \\ \text{subject to:} \ m = E_{P_1}[X] \text{ or } m = E_{P^*}[X] \end{array} \right. \right\}$$

Amounts to the minimization of Rényi/Tsallis divergence!

Rationale for Rényi-Tsallis maximum *Q*-entropy

Solution

And the maximization of Rényi Q-entropy...

$$K = \begin{cases} \min_{P_1} \begin{cases} \sup_{\alpha} \{ \alpha \theta - \underbrace{\log\left(\int P_1(x)^{\alpha} Q(x)^{1-\alpha} dx\right)}_{(\alpha-1)D_{\alpha}(P_1||Q)} \\ \text{subject to: } m = E_{P_1}[X] \text{ or } m = E_{P^*}[X] \end{cases}$$

$$K = \sup_{\alpha} \left\{ \alpha \theta + (1 - \alpha) \qquad \qquad \mathscr{F}_{\alpha}^{(1 \text{ or } \alpha)}(m) \right.$$

L Entropy functionals $\mathscr{F}^{(1)}_{\alpha}(m)$ and $\mathscr{F}^{(\alpha)}_{\alpha}(m)$

Entropy functionals

Entropy functionals in the domain of observables. 'Contractions' of Rényi information divergence or of Kullback-Leibler information divergence for given constraints. Level-one entropy functionals.

$$\mathscr{F}_{\alpha}^{(1 \text{ or } \alpha)}(m) = \begin{cases} \min_{P_1} D_{\alpha}(P_1||Q) \\ \text{subject to: } m = E_{P_1}[X] \text{ or } m = E_{P^*}[X] \end{cases},$$

Original problem reads

$$K = \sup_{\alpha} \left[\alpha \theta + (1 - \alpha) \mathscr{F}_{\alpha}^{(1 \text{ or } \alpha)}(m) \right].$$

Properties: These entropy functionals are nonnegative, with an unique minimum at m_Q , the mean of Q. Furthermore, $\mathscr{F}^{(1)}_{\alpha}(m)$ is strictly convex for $\alpha \in [0,1]$.

Solutions to the maximization of Rényi *Q*-entropy

A general 'Levy' distribution

A general 'Levy' distribution

Distribution $P_v^{\#}(x)$ is defined by:

$$P_{\nu}^{\#}(x) = [\gamma(x - \bar{x}) + 1]^{\nu} Q(x) e^{D_{\alpha}(P_{\nu}^{\#}||Q)},$$

on domain $\mathscr{D} = \mathscr{D}_Q \cap \mathscr{D}_\gamma$, where $\mathscr{D}_Q = \{x : Q(x) \ge 0\}$ and $\mathscr{D}_\gamma = \{x : \gamma(x - \overline{x}) + 1 \ge 0\}$.

Solutions to the maximization of Rényi *Q*-entropy

A general 'Levy' distribution

A general 'Levy' distribution

Distribution $P_{v}^{\#}(x)$ is defined by:

 $P_{\nu}^{\#}(x) = [\gamma(x - \bar{x}) + 1]^{\nu} Q(x) e^{D_{\alpha}(P_{\nu}^{\#}||Q)},$

on domain $\mathscr{D} = \mathscr{D}_Q \cap \mathscr{D}_\gamma$, where $\mathscr{D}_Q = \{x : Q(x) \ge 0\}$ and $\mathscr{D}_\gamma = \{x : \gamma(x - \overline{x}) + 1 \ge 0\}$.

- \overline{x} is either (a) a fixed parameter, say *m*, and $P_V^{\#}(x)$ is a two parameters distribution, (b) or some statistical mean with respect to $P_V^{\#}(x)$, e.g. its "classical" or "generalized" mean, and as such a function of γ .
- $P_v^{\#}(x)$ is not necessarily normalized to one.
- Partition function $Z_{\nu}(\gamma, \overline{x}) = \int_{\mathscr{D}} [\gamma(x \overline{x}) + 1]^{\nu} Q(x) dx.$

Solutions to the maximization of Rényi *Q*-entropy

Normalization of 'Levy' distribution

Normalization of 'Levy' distribution

Theorem

The Levy distribution P[#]_ξ(x) with exponent v = ξ = 1/(α-1) is normalized to one if and only if x̄ = E_ξ [x], the statistical mean of the distribution, and D_α(P[#]_ξ||Q) = −log Z_{ξ+1}(γ,x̄) = −log Z_ξ(γ,x̄).

Solutions to the maximization of Rényi *Q*-entropy

Normalization of 'Levy' distribution

Normalization of 'Levy' distribution

Theorem

- The Levy distribution P[#]_ξ(x) with exponent v = ξ = 1/(α-1) is normalized to one if and only if x̄ = E_ξ [x], the statistical mean of the distribution, and D_α(P[#]_ξ||Q) = −log Z_{ξ+1}(γ,x̄) = −log Z_ξ(γ,x̄).
- The Levy distribution $P_{-\xi}^{\#}(x)$ with exponent $v = -\xi = \frac{1}{1-\alpha}$ is normalized to one if and only if $\overline{x} = E_{-\xi-1}[x] = E_{-\xi}^{(\alpha)}[x]$, the generalized α -expectation of the distribution, and $D_{\alpha}(P_{-\xi}^{\#}||Q) = -\log Z_{-(\xi+1)}(\gamma,\overline{x}) = -\log Z_{-\xi}(\gamma,\overline{x})$.

Solutions to the maximization of Rényi *Q*-entropy

Normalization of 'Levy' distribution

Normalization of 'Levy' distribution

Theorem

- The Levy distribution P[#]_ξ(x) with exponent v = ξ = 1/(α-1) is normalized to one if and only if x̄ = E_ξ [x], the statistical mean of the distribution, and D_α(P[#]_ξ||Q) = −log Z_{ξ+1}(γ,x̄) = −log Z_ξ(γ,x̄).
- The Levy distribution $P_{-\xi}^{\#}(x)$ with exponent $v = -\xi = \frac{1}{1-\alpha}$ is normalized to one if and only if $\bar{x} = E_{-\xi-1}[x] = E_{-\xi}^{(\alpha)}[x]$, the generalized α -expectation of the distribution, and $D_{\alpha}(P_{-\xi}^{\#}||Q) = -\log Z_{-(\xi+1)}(\gamma, \bar{x}) = -\log Z_{-\xi}(\gamma, \bar{x})$.
- ⇒ When \bar{x} is a fixed parameter *m*, this will be only true for a special value γ^* of γ such that $E_{\xi}[x] = m$ or $E_{-\xi}^{(\alpha)}[x] = m$.

Solutions to the maximization of Rényi *Q*-entropy

Normalization of 'Levy' distribution

Sketch of proof

• If $P(x) = K(x)Q(x)e^{D_{\alpha}(P||Q)}$, then $D_{\alpha}(P||Q) = -\log \int K(x)^{\alpha}Q(x)dx$ and $D_{\alpha}(P||Q) = -\log \int K(x)Q(x)dx$ if P(x) is normalized to one.

Solutions to the maximization of Rényi *Q*-entropy

Normalization of 'Levy' distribution

- If $P(x) = K(x)Q(x)e^{D_{\alpha}(P||Q)}$, then $D_{\alpha}(P||Q) = -\log \int K(x)^{\alpha}Q(x)dx$ and $D_{\alpha}(P||Q) = -\log \int K(x)Q(x)dx$ if P(x) is normalized to one.
- **2** For distribution $P_{\nu}^{\#}(x)$, and any parameter γ we have $D_{\alpha}(P_{\nu}^{\#}||Q) = -\log Z_{\alpha\nu}(\gamma, \bar{x})$ and $D_{\alpha}(P_{\nu}^{\#}||Q) = -\log Z_{\nu}(\gamma, \bar{x})$ if $P_{\nu}^{\#}(x)$ is normalized to one.

Solutions to the maximization of Rényi *Q*-entropy

Normalization of 'Levy' distribution

- If $P(x) = K(x)Q(x)e^{D_{\alpha}(P||Q)}$, then $D_{\alpha}(P||Q) = -\log \int K(x)^{\alpha}Q(x)dx$ and $D_{\alpha}(P||Q) = -\log \int K(x)Q(x)dx$ if P(x) is normalized to one.
- **2** For distribution $P_{\nu}^{\#}(x)$, and any parameter γ we have $D_{\alpha}(P_{\nu}^{\#}||Q) = -\log Z_{\alpha\nu}(\gamma, \bar{x})$ and $D_{\alpha}(P_{\nu}^{\#}||Q) = -\log Z_{\nu}(\gamma, \bar{x})$ if $P_{\nu}^{\#}(x)$ is normalized to one.
- **3** If $v = \pm \xi$, we have $Z_{\alpha v}(\gamma, \overline{x}) = Z_{\pm(\xi+1)}(\gamma, \overline{x}) = Z_{\pm\xi}(\gamma, \overline{x})$ if $P_{\pm\xi}^{\#}(x)$ is normalized to one.

Normalization of 'Levy' distribution

- If $P(x) = K(x)Q(x)e^{D_{\alpha}(P||Q)}$, then $D_{\alpha}(P||Q) = -\log \int K(x)^{\alpha}Q(x)dx$ and $D_{\alpha}(P||Q) = -\log \int K(x)Q(x)dx$ if P(x) is normalized to one.
- **2** For distribution $P_{\nu}^{\#}(x)$, and any parameter γ we have $D_{\alpha}(P_{\nu}^{\#}||Q) = -\log Z_{\alpha\nu}(\gamma, \bar{x})$ and $D_{\alpha}(P_{\nu}^{\#}||Q) = -\log Z_{\nu}(\gamma, \bar{x})$ if $P_{\nu}^{\#}(x)$ is normalized to one.
- **3** If $v = \pm \xi$, we have $Z_{\alpha v}(\gamma, \overline{x}) = Z_{\pm(\xi+1)}(\gamma, \overline{x}) = Z_{\pm\xi}(\gamma, \overline{x})$ if $P_{\pm\xi}^{\#}(x)$ is normalized to one.
- **4** Partition functions of successive exponents are linked by $Z_{\nu+1}(\gamma, \overline{x}) = E_{\nu+1-k} \left[(\gamma(x - \overline{x}) + 1)^k \right] Z_{\nu+1-k}(\gamma, \overline{x}).$ For k=1: $Z_{\nu+1}(\gamma, \overline{x}) = E_{\nu} [\gamma(x - \overline{x}) + 1] Z_{\nu}(\gamma, \overline{x}),$

Normalization of 'Levy' distribution

- If $P(x) = K(x)Q(x)e^{D_{\alpha}(P||Q)}$, then $D_{\alpha}(P||Q) = -\log \int K(x)^{\alpha}Q(x)dx$ and $D_{\alpha}(P||Q) = -\log \int K(x)Q(x)dx$ if P(x) is normalized to one.
- **2** For distribution $P_{\nu}^{\#}(x)$, and any parameter γ we have $D_{\alpha}(P_{\nu}^{\#}||Q) = -\log Z_{\alpha\nu}(\gamma, \bar{x})$ and $D_{\alpha}(P_{\nu}^{\#}||Q) = -\log Z_{\nu}(\gamma, \bar{x})$ if $P_{\nu}^{\#}(x)$ is normalized to one.
- **3** If $v = \pm \xi$, we have $Z_{\alpha v}(\gamma, \overline{x}) = Z_{\pm(\xi+1)}(\gamma, \overline{x}) = Z_{\pm\xi}(\gamma, \overline{x})$ if $P_{\pm\xi}^{\#}(x)$ is normalized to one.
- **4** Partition functions of successive exponents are linked by $Z_{\nu+1}(\gamma, \overline{x}) = E_{\nu+1-k} \left[(\gamma(x \overline{x}) + 1)^k \right] Z_{\nu+1-k}(\gamma, \overline{x}).$ For k=1: $Z_{\nu+1}(\gamma, \overline{x}) = E_{\nu} [\gamma(x - \overline{x}) + 1] Z_{\nu}(\gamma, \overline{x}),$
- **6** And $Z_{\nu+1}(\gamma, \overline{x}) = Z_{\nu}(\gamma, \overline{x})$ iff $\overline{x} = E_{\nu}[X]$

L Solutions

Solutions

Procedure: (i) minimize the Lagrangian in $P(x) \rightarrow P_{\lambda,\mu}(x)$, (ii) maximize the dual function in order to exhibit the optimum Lagrange parameters.

L Solutions

Solutions

Procedure: (i) minimize the Lagrangian in $P(x) \rightarrow P_{\lambda,\mu}(x)$, (ii) maximize the dual function in order to exhibit the optimum Lagrange parameters.

Taking into account normalization conditions described above,

(C)
$$P_C(x) = \frac{[\gamma(x-\bar{x})+1]^{\xi}}{Z_{\xi}(\gamma,\bar{x})}Q(x)$$
, with $\bar{x} = E_{P_C}[X] = E_{\xi}[X]$
(G) $P_G(x) = \frac{(1+\gamma(x-\bar{x}))^{-\xi}}{Z_{-\xi}(\gamma,\bar{x})}Q(x)$ with $\bar{x} = E_{P_G}[X] = E_{-(\xi+1)}[X]$

where \bar{x} is a statistical mean, function of γ , and NOT a fixed value (*long-time mistake*); $\xi = \frac{1}{\alpha - 1}$.

L Solutions

Solutions

Procedure: (i) minimize the Lagrangian in $P(x) \rightarrow P_{\lambda,\mu}(x)$, (ii) maximize the dual function in order to exhibit the optimum Lagrange parameters.

Taking into account normalization conditions described above,

(C)
$$P_C(x) = \frac{[\gamma(x-\bar{x})+1]^{\xi}}{Z_{\xi}(\gamma,\bar{x})}Q(x)$$
, with $\bar{x} = E_{P_C}[X] = E_{\xi}[X]$
(G) $P_G(x) = \frac{(1+\gamma(x-\bar{x}))^{-\xi}}{Z_{-\xi}(\gamma,\bar{x})}Q(x)$ with $\bar{x} = E_{P_G}[X] = E_{-(\xi+1)}[X]$

where \bar{x} is a statistical mean, function of γ , and NOT a fixed value *(long-time mistake)*; $\xi = \frac{1}{\alpha - 1}$. Optimum distributions $P_{C,G}(x)$ are self referential (implicitely defined) and associated dual functions are intractable.

Solutions to the maximization of Rényi *Q*-entropy

Alternate dual functions

Optimum distributions $P_{C,G}(x)$ are self referential (implicitely defined) and associated dual functions are intractable \rightarrow alternate dual functions?

Solutions to the maximization of Rényi *Q*-entropy

Alternate dual functions

Optimum distributions $P_{C,G}(x)$ are self referential (implicitely defined) and associated dual functions are intractable \rightarrow alternate dual functions? It can be shown that γ^* is solution of the *equivalent* pbs

 $\max_{\gamma} \left[-\log Z_{\xi+1}(\gamma,m) \right]$ Classical $\max_{\gamma} \left[-\log Z_{-\xi}(\gamma,m) \right]$

Generalized

Solutions to the maximization of Rényi *Q*-entropy

Alternate dual functions

Optimum distributions $P_{C,G}(x)$ are self referential (implicitely defined) and associated dual functions are intractable \rightarrow alternate dual functions? It can be shown that γ^* is solution of the *equivalent* pbs

 $\max_{\gamma} \left[-\log Z_{\xi+1}(\gamma,m) \right] \qquad \max_{\gamma} \left[-\log Z_{-\xi}(\gamma,m) \right]$ Classical Generalized

$$\max_{\gamma} \widetilde{D}(\gamma) = \begin{cases} \min_{P_1} D_{\alpha}(P_1||Q) \\ \text{s.t. } m = E_{\alpha}[X] \\ \text{dual attainment} \end{cases} = D_{\alpha}(\hat{P}_1||Q) = \mathscr{F}_{\alpha}^{(.)}(m)$$

Solutions to the maximization of Rényi *Q*-entropy

Alternate dual functions

Optimum distributions $P_{C,G}(x)$ are self referential (implicitely defined) and associated dual functions are intractable \rightarrow alternate dual functions? It can be shown that γ^* is solution of the *equivalent* pbs

 $\max_{\gamma} \left[-\log Z_{\xi+1}(\gamma, m) \right] \qquad \qquad \max_{\gamma} \left[-\log Z_{-\xi}(\gamma, m) \right]$ Classical Generalized

$$\max_{\gamma} \widetilde{D}(\gamma) = \begin{cases} \min_{P_1} D_{\alpha}(P_1||Q) \\ \text{s.t. } m = E_{\cdot}[X] \\ \text{dual attainment} \end{cases} = D_{\alpha}(\hat{P}_1||Q) = \mathscr{F}_{\alpha}^{(.)}(m)$$

 \mapsto two practical numerical schemes for the identification of the distributions parameters ($Z_{\xi+1}(\gamma,m)$ and $Z_{-\xi}(\gamma,m)$ are two convex functions for $\alpha \leq 1$) + subtilities

Entropy functionals in special cases for *Q* e.g. uniform, Bernoulli, gamma, Poisson, Gauss, ...

$$\mathscr{F}_{\alpha}^{(1 \text{ or } \alpha)}(m) = \begin{cases} \min_{P_1} D_{\alpha}(P_1 || Q) \\ \text{subject to: } m = E_{P_1}[X] \text{ or } m = E_{P^*}[X] \end{cases},$$

Computation of entropies $\mathscr{F}_{\alpha}^{(1 \text{ or } \alpha)}(x)$ can then be carried in the following way:

Entropy functionals in special cases for *Q* e.g. uniform, Bernoulli, gamma, Poisson, Gauss, ...

$$\mathscr{F}_{\alpha}^{(1 \text{ or } \alpha)}(m) = \begin{cases} \min_{P_1} D_{\alpha}(P_1||Q) \\ \text{subject to: } m = E_{P_1}[X] \text{ or } m = E_{P^*}[X] \end{cases},$$

Computation of entropies $\mathscr{F}_{\alpha}^{(1 \text{ or } \alpha)}(x)$ can then be carried in the following way:

(a) compute $Z_v(\gamma,m)$ for the reference measure Q considered,

Entropy functionals in special cases for *Q* e.g. uniform, Bernoulli, gamma, Poisson, Gauss, ...

$$\mathscr{F}_{\alpha}^{(1 \text{ or } \alpha)}(m) = \begin{cases} \min_{P_1} D_{\alpha}(P_1||Q) \\ \text{subject to: } m = E_{P_1}[X] \text{ or } m = E_{P^*}[X] \end{cases},$$

Computation of entropies $\mathscr{F}_{\alpha}^{(1 \text{ or } \alpha)}(x)$ can then be carried in the following way:

- (a) compute $Z_v(\gamma,m)$ for the reference measure Q considered,
- (b) solve (or approximate the solution to) $\frac{d}{d\gamma}Z_{\nu+1}(\gamma,m) = 0$ in terms of γ ,

Entropy functionals in special cases for *Q* e.g. uniform, Bernoulli, gamma, Poisson, Gauss, ...

$$\mathscr{F}_{\alpha}^{(1 \text{ or } \alpha)}(m) = \begin{cases} \min_{P_1} D_{\alpha}(P_1 || Q) \\ \text{subject to: } m = E_{P_1}[X] \text{ or } m = E_{P^*}[X] \end{cases},$$

Computation of entropies $\mathscr{F}_{\alpha}^{(1 \text{ or } \alpha)}(x)$ can then be carried in the following way:

- (a) compute $Z_v(\gamma,m)$ for the reference measure Q considered,
- (b) solve (or approximate the solution to) $\frac{d}{d\gamma}Z_{\nu+1}(\gamma,m) = 0$ in terms of γ ,
- (c) $\mathscr{F}^{(1)}_{\alpha}(m) = -\log Z_{\xi+1}(\gamma^*, m)$ and $\mathscr{F}^{(\alpha)}_{\alpha}(m) = -\log Z_{-\xi}(\gamma^*, m)$, where γ^* realizes the maximum of the function.

Entropy functionals in special cases for *Q* e.g. uniform, Bernoulli, gamma, Poisson, Gauss, ...

$$\mathscr{F}_{\alpha}^{(1 \text{ or } \alpha)}(m) = \begin{cases} \min_{P_1} D_{\alpha}(P_1 || Q) \\ \text{subject to: } m = E_{P_1}[X] \text{ or } m = E_{P^*}[X] \end{cases},$$

Computation of entropies $\mathscr{F}_{\alpha}^{(1 \text{ or } \alpha)}(x)$ can then be carried in the following way:

- (a) compute $Z_v(\gamma,m)$ for the reference measure Q considered,
- (b) solve (or approximate the solution to) $\frac{d}{d\gamma}Z_{\nu+1}(\gamma,m) = 0$ in terms of γ ,
- (c) $\mathscr{F}^{(1)}_{\alpha}(m) = -\log Z_{\xi+1}(\gamma^*, m)$ and $\mathscr{F}^{(\alpha)}_{\alpha}(m) = -\log Z_{-\xi}(\gamma^*, m)$, where γ^* realizes the maximum of the function.

Limit case $\alpha \rightarrow 1$:

•
$$v = \xi + 1
ightarrow -\infty$$
 or $v = -\xi
ightarrow +\infty$

Entropy functionals in special cases for Q

Example: Bernoulli reference

Bernoulli reference

$$\begin{split} \mathcal{Q}(x) &= \beta \,\delta(x) + (1-\beta) \,\delta(x-1).\\ Z_{\nu+1}(\gamma,m) &= \beta \,(1-m\gamma)^{\nu+1} + (1-\beta) \,(\gamma-m\gamma+1)^{\nu+1}\\ \mathscr{F}_{\alpha \to 1}^{(.)}(x) &= x \ln\left(\frac{x}{1-\beta}\right) + (1-x) \ln\left(\frac{1-x}{\beta}\right). \end{split}$$

Figure: Entropy functionals $\mathscr{F}_{\alpha}^{(1)}(x)$ and $\mathscr{F}_{\alpha}^{(\alpha)}(x)$.

Entropy functionals in special cases for Q

└-Other references

Other references

 Exponential reference (β): leads to a family of functions that converge to

$$(\beta x - 1) - \log(\beta x)$$

(Burg entropy for $\beta = 1$).

 Poisson reference (μ): Leads to a family of functions that converge to

$$x\ln\frac{x}{\mu} + (\mu - x)$$

cross-entropy between x and μ or Kullback-Leibler (Shannon) entropy functional with respect to μ .

Ο...

L The $\alpha \leftrightarrow 1/\alpha$ duality

The $\alpha \leftrightarrow 1/\alpha$ duality

We will have pointwise equality of dual functions

$$-\log Z_{\xi_1+1}(\gamma,m)$$
 and $-\log Z_{-\xi_2}(\gamma,m)$

if $\xi_1 + 1 = -\xi_2$, that is if $\alpha_1 = 1/\alpha_2$. In the general case, it can be checked that we *always* have the equality $D_{\frac{1}{2}}(P^*||Q) = D_{\alpha}(P_1||Q)$ so that

$$\begin{cases} \inf_{P_1} D_{\alpha}(P_1||Q) \\ s.t \ E_{P^*}[X] = m \end{cases} = \begin{cases} \inf_{P^*} D_{\frac{1}{\alpha}}(P^*||Q) \\ s.t \ E_{P^*}[X] = m \end{cases}$$

so that generalized and classical mean constraints can always be swapped, if $\alpha \leftrightarrow 1/\alpha$, and

$$\mathscr{F}^{(\alpha)}_{\alpha}(x) = \mathscr{F}^{(1)}_{1/\alpha}(x).$$

Legendre structure

Legendre structure

Entropies: general form $S = \log Z_{\nu+1}(\gamma, \overline{x})$. We obtain the Euler formula:

$$\frac{dS}{d\lambda} = \frac{dS}{d\gamma}\frac{d\gamma}{d\lambda} = \lambda \frac{d\overline{x}}{d\lambda}.$$

The derivative of the entropy with respect to the mean is

$$\frac{dS}{d\overline{x}} = \frac{dS}{d\lambda}\frac{d\lambda}{d\overline{x}} = \lambda.$$

Massieu potential $\phi(\lambda) = S - \lambda \overline{x}$ (\equiv free energy).

$$rac{d\phi}{d\lambda} = -ar{x}, ext{ and } rac{d\phi}{dar{x}} = -ar{x}rac{d\lambda}{dar{x}}$$

These four relations show that *S* and ϕ are conjugated with variables \overline{x} and $\lambda : S[\overline{x}] \rightleftharpoons \phi[\lambda]$, so that the basic Legendre structure of thermodynamics is preserved.

Summary

Summary

- suggested a link between classical ME and maximization of Rényi-Tsallis entropy,
- derived expression of solutions,
- proposed numerical schemes,
- worked out special cases,

Todo

- aspects in practical computation of $\mathscr{F}_{\alpha}^{(1 \text{ or } \alpha)}(m)$,
- $\overline{x} \leftrightarrow \gamma$ mapping,
- extensions to many constraints m, θ

Θ ...