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An amended MaxEnt formulation for deriving Tsallis factors, and associated issues

Background

Tsallis’ entropy

Background
Tsallis entropy

Hα(P) =
1

1−α

[∫
P(x)αdx−1

]
,

was introduced in 1988 for multifractals.
It is nonextensive Hα(X+Y) 6= Hα(X)+Hα(Y) when X and Y
are independent. Strange property?
It generalizes Shannon/Boltzmann entropy (as others):

lim
α→1

Hα(P) = S(P).

Tsallis literature: 88 → now more than 1000 papers
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An amended MaxEnt formulation for deriving Tsallis factors, and associated issues

Background

Power laws

When maximized under mean constraint, it leads to power
laws {

maxP Hα(P)
s.t. Ē =

∫
εP(ε)dε

=⇒ P = K(1+ γε)ν ' Kε
ν

And power laws are interesting as they appear in
turbulence, fractals, . . .
Often, power laws also meet long dependence phenomena
(with unclear connexions).

Fluctuating equilibriums

P(ε) ∝ e−ε/kT T∼γ−→ P(ε) ∝ (1+ γ(ε− Ē))ν
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3/ 24



An amended MaxEnt formulation for deriving Tsallis factors, and associated issues

Background

Constraints

Constraints
Three choices for MaxTEnt

1 Tsallis (88)

{
maxP Hα(P)
s.t. Ē =

∫
εP(ε)dε

Classical mean

2 Curado-Tsallis (91){
maxP Hα(P)
s.t. Ē =

∫
εP(ε)αdε

3 Tsallis-Mendes-Plastino (98){
maxP Hα(P)
s.t. Ē =

∫
ε×Escortdistributiondε

Generalized mean
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∫
εP(ε)αdε

3 Tsallis-Mendes-Plastino (98){
maxP Hα(P)
s.t. Ē =
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An amended MaxEnt formulation for deriving Tsallis factors, and associated issues

Outline

Outline
1 Maximization of Rényi-Tsallis entropy can be argued as

the minimum of Kullback-Leibler divergence (Shannon
Q-entropy) under a constraint that model a displacement
from conventional equilibrium

2 Two scenarii for the observation constraint are relevant,
that lead to (i) classical mean constraint (ii) generalized
mean constraint

3 Determination of law parameter. We will find something like

P(ε) ∝ (1+ γ(ε− ε̄))ν

That is self-referential. → efficient procedures for
determining γ.

4 Special cases → well known entropies
5 Legendre structure and thermodynamics
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Q-entropies and divergences

Q-entropies and divergences

H(P) =−∑
D

P(x) logP(x)

do not pass easily to the continuous case (no invariance).
Correct extension (Shannon 48, Jaynes 63, Kullback 51)

HQ(P) =−
∫

D
P(x) log

P(x)
Q(x)

dx=−D(P||Q)

Generalization{
Rényi 1

1−α
log

∫
Pαdx

Tsallis 1
1−α

[
∫

Pαdx−1]
Dα(P||Q) = 1

1−α
log

∫
PαQ1−αdx

1
1−α

[∫
PαQ1−αdx−1

]
Rényi and Tsallis entropy have the same maxima
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Rationale for Rényi-Tsallis maximum Q-entropy

Rationale for Rényi-Tsallis maximum Q-entropy
In statistics, Sanov theorem or entropy concentration theorem
are the rationale for MaxEnt. If one has a mean constraint and
generates sequences according to Q, then the most probable
(set of) distribution is the nearest to Q, compatible with the
constraint, in the Kullback-Leibler sense.

And there exist an overwhelmingly preponderant distribution:

P̂ME/

{
minP D(P||Q)
s.t. m= EP[X]

But minimization of Tsallis-Rényi divergence gives a different
distribution P̂α that is absolutely improbable. . .
 Another probabilistic justification?
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Rationale for Rényi-Tsallis maximum Q-entropy

Displaced equilibriums

Displaced equilibriums
Fluctuations of an intensive parameter
≡ modified/perturbated “classical” equilibrium.
Instead of selecting the nearest distribution to Q, one selects
the nearest to Q but also to P1: the equilibrium distribution is
somewhere between P1 and Q

A

B

P_1

Q

P
D(P||Q)

D(P||P_1)

With D(P||Q) = D(P||P1)+θ

{
minP D(P||Q)

s.t. θ = D(P||Q)−D(P||P1)

θ =
∫

P(x) log
P1(x)
Q(x)

dx

is the mean log-likelihood.
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Rationale for Rényi-Tsallis maximum Q-entropy

Observables

Observables
We also have an observable

1 m= EP1[X] =
∫

xP1(x)dx mean of subsystem (A)
2 m= EP∗ [X] =

∫
xP∗(x)dx mean of global system (A,B)

K =

 minP1

{
minP D(P||Q) = minP

∫
P(x) log P(x)

Q(x)dx

subject to: θ =
∫

P(x) log P1(x)
Q(x) dx

subject to: m= EP1[X] or m= EP∗ [X]

,
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Rationale for Rényi-Tsallis maximum Q-entropy

Solution

Solution to the first problem

{
minP D(P||Q)

s.t θ = D(P||Q)−D(P||P1)

Solution: (Kullback59)

P∗(x) =
P1(x)αQ(x)1−α∫
P1(x)αQ(x)1−αdx

,

→ Escort distribution of nonextensive statistics

P∗ which is the geometric mean between P1and Q realizes
a trade-off, governed by α, between the two references.

Note that m= EP∗ [X] is the ‘generalized α-expectation’ and
has a clear meaning now!
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Rationale for Rényi-Tsallis maximum Q-entropy

Solution

Optimum Lagrange parameter
The parameter α is simply the Lagrange parameter associated
to the constraint θ , α ≤ 1, and is given by

α
∗/ sup

α

{
αθ − log

(∫
P1(x)αQ(x)1−αdx

)}
and

K1 =
{

minP D(P||Q)
s.t θ = D(P||Q)−D(P||P1)

= α
∗
θ − log

(∫
P1(x)α∗Q(x)1−α∗dx

)
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Rationale for Rényi-Tsallis maximum Q-entropy

Solution

And the maximization of Rényi Q-entropy. . .

K =


minP1


minP D(P||Q) = minP

∫
P(x) log P(x)

Q(x)dx

subject to: θ =
∫

P(x) log P1(x)
Q(x) dx

subject to: m= EP1[X] or m= EP∗ [X]

,

and

K = sup
α

{
αθ +(1−α)

}

Amounts to the minimization of Rényi/Tsallis divergence!
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Rationale for Rényi-Tsallis maximum Q-entropy

Entropy functionals F
(1)
α (m) and F

(α)
α (m)

Entropy functionals
Entropy functionals in the domain of observables.
‘Contractions’ of Rényi information divergence or of
Kullback-Leibler information divergence for given constraints.
Level-one entropy functionals.

F
(1 or α)
α (m) =

{
minP1 Dα(P1||Q)

subject to: m= EP1[X] or m= EP∗ [X]
,

Original problem reads

K = sup
α

[
αθ +(1−α)F (1 or α)

α (m)
]
.

Properties: These entropy functionals are nonnegative, with an
unique minimum at mQ , the mean of Q. Furthermore, F

(1)
α (m)

is strictly convex for α ∈ [0,1].
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Solutions to the maximization of Rényi Q-entropy

A general ‘Levy’ distribution

A general ‘Levy’ distribution
Distribution P#

ν(x) is defined by:

P#
ν(x) = [γ(x−x)+1]ν Q(x)eDα (P#

ν ||Q),

on domain D = DQ∩Dγ , where DQ = {x : Q(x)≥ 0} and
Dγ = {x : γ(x−x)+1≥ 0} .

x is either (a) a fixed parameter, say m, and P#
ν(x) is a two

parameters distribution, (b) or some statistical mean with
respect to P#

ν(x), e.g. its “classical” or “generalized” mean,
and as such a function of γ.

P#
ν(x) is not necessarily normalized to one.

Partition function Zν(γ,x) =
∫
D [γ(x−x)+1]ν Q(x)dx.
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Solutions to the maximization of Rényi Q-entropy

Normalization of ‘Levy’ distribution

Normalization of ‘Levy’ distribution

Theorem

The Levy distribution P#
ξ
(x) with exponent ν = ξ = 1

α−1 is
normalized to one if and only if x = Eξ [x] , the statistical
mean of the distribution, and
Dα(P#

ξ
||Q) =− logZξ+1(γ,x) =− logZξ (γ,x).

The Levy distribution P#
−ξ

(x) with exponent ν =−ξ = 1
1−α

is normalized to one if and only if x = E−ξ−1 [x] = E(α)
−ξ

[x] ,
the generalized α−expectation of the distribution, and
Dα(P#

−ξ
||Q) =− logZ−(ξ+1)(γ,x) =− logZ−ξ (γ,x).
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An amended MaxEnt formulation for deriving Tsallis factors, and associated issues

Solutions to the maximization of Rényi Q-entropy

Normalization of ‘Levy’ distribution

Sketch of proof
1 If P(x) = K(x)Q(x)eDα (P||Q), then

Dα(P||Q) =− log
∫

K(x)αQ(x)dx and
Dα(P||Q) =− log

∫
K(x)Q(x)dx if P(x) is normalized to one.

2 For distribution P#
ν(x), and any parameter γ we have

Dα(P#
ν ||Q) =− logZαν(γ,x) and

Dα(P#
ν ||Q) =− logZν(γ,x) if P#

ν(x) is normalized to one.
3 If ν =±ξ , we have Zαν(γ,x) = Z±(ξ+1)(γ,x) = Z±ξ (γ,x) if

P#
±ξ

(x) is normalized to one.

4 Partition functions of successive exponents are linked by

Zν+1(γ,x) = Eν+1−k

[
(γ(x−x)+1)k

]
Zν+1−k(γ,x).

For k=1: Zν+1(γ,x) = Eν [γ(x−x)+1]Zν(γ,x),
5 And Zν+1(γ,x) = Zν(γ,x) iff x = Eν [X]
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An amended MaxEnt formulation for deriving Tsallis factors, and associated issues

Solutions to the maximization of Rényi Q-entropy

Solutions

Solutions
Procedure: (i) minimize the Lagrangian in P(x)→ Pλ ,µ(x), (ii)
maximize the dual function in order to exhibit the optimum
Lagrange parameters.

Taking into account normalization conditions described above,

(C) PC(x) =
[γ(x−x)+1]ξ

Zξ (γ,x)
Q(x), with x = EPC[X] = Eξ [X]

(G) PG(x) =
(1+ γ(x−x))−ξ

Z−ξ (γ,x)
Q(x) with x = EPG[X] = E−(ξ+1)[X]

where x is a statistical mean, function of γ, and NOT a fixed
value (long-time mistake); ξ = 1

α−1.
Optimum distributions PC,G(x) are self referential (implicitely
defined) and associated dual functions are intractable.
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An amended MaxEnt formulation for deriving Tsallis factors, and associated issues

Solutions to the maximization of Rényi Q-entropy

Alternate dual functions

Optimum distributions PC,G(x) are self referential (implicitely
defined) and associated dual functions are intractable
 alternate dual functions?

It can be shown that γ∗ is solution of the equivalent pbs

max
γ

[
− logZξ+1(γ,m)

]
Classical

max
γ

[
− logZ−ξ (γ,m)

]
Generalized

maxγ D̃(γ) =
{

minP1 Dα(P1||Q)
s.t. m= E.[X]

= Dα(P̂1||Q) = F
(.)
α (m)

dual attainment entropy functional

7→ two practical numerical schemes for the identification of the
distributions parameters (Zξ+1(γ,m) and Z−ξ (γ,m) are two
convex functions for α ≤ 1) + subtilities
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An amended MaxEnt formulation for deriving Tsallis factors, and associated issues

Entropy functionals in special cases for Q

Entropy functionals in special cases for Q

e.g. uniform, Bernoulli, gamma, Poisson, Gauss, . . .

F
(1 or α)
α (m) =

{
minP1 Dα(P1||Q)

subject to: m= EP1[X] or m= EP∗ [X]
,

Computation of entropies F
(1 or α)
α (x) can then be carried in the

following way:

(a) compute Zν(γ,m) for the reference measure Q considered,

(b) solve (or approximate the solution to) d
dγ

Zν+1(γ,m) = 0 in
terms of γ,

(c) F
(1)
α (m) =− logZξ+1(γ∗,m) and F

(α)
α (m) =− logZ−ξ (γ∗,m),

where γ∗ realizes the maximum of the function.

Limit case α → 1:

ν = ξ +1→−∞ or ν =−ξ →+∞
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Entropy functionals in special cases for Q

Example: Bernoulli reference

Bernoulli reference
Q(x) = βδ (x)+(1−β )δ (x−1).

Zν+1(γ,m)= β (1−mγ)ν+1+(1−β )(γ−mγ +1)ν+1

F
(.)
α→1(x)= xln

(
x

1−β

)
+(1−x) ln

(
1−x

β

)
.

Fermi-Dirac entropy.
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Figure: Entropy functionals F
(1)
α (x) and F

(α)
α (x).
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Entropy functionals in special cases for Q

Other references

Other references
Exponential reference (β ): leads to a family of functions
that converge to

(βx−1)− log(βx)

(Burg entropy for β = 1).

Poisson reference (µ): Leads to a family of functions that
converge to

xln
x
µ

+(µ−x)

cross-entropy between x and µ or Kullback-Leibler
(Shannon) entropy functional with respect to µ.

. . .
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The α ↔ 1/α duality

The α ↔ 1/α duality
We will have pointwise equality of dual functions

− logZξ1+1(γ,m) and − logZ−ξ2
(γ,m)

if ξ1 +1 =−ξ2, that is if α1 = 1/α2.
In the general case, it can be checked that we always have
the equality D 1

α

(P∗||Q) = Dα(P1||Q) so that{
infP1 Dα(P1||Q)
s.t EP∗ [X] = m

=

{
infP∗ D 1

α

(P∗||Q)
s.t EP∗ [X] = m

,

so that generalized and classical mean constraints can
always be swapped, if α ↔ 1/α, and

F
(α)
α (x) = F

(1)
1/α

(x).
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Legendre structure

Legendre structure
Entropies: general form S= logZν+1(γ,x).
We obtain the Euler formula:

dS
dλ

=
dS
dγ

dγ

dλ
= λ

dx
dλ

.

The derivative of the entropy with respect to the mean is

dS
dx

=
dS
dλ

dλ

dx
= λ .

Massieu potential φ(λ ) = S−λx (≡ free energy).

dφ

dλ
=−x, and

dφ

dx
=−x

dλ

dx
.

These four relations show that Sand φ are conjugated with
variables x and λ : S [x]
 φ [λ ] , so that the basic Legendre
structure of thermodynamics is preserved.
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Summary

Summary
suggested a link between classical ME and maximization
of Rényi-Tsallis entropy,

derived expression of solutions,

proposed numerical schemes,

worked out special cases,

Todo

aspects in practical computation of F
(1 or α)
α (m),

x↔ γ mapping,

extensions to many constraints m,θ

...
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