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AIM

Aim of this talk is two-fold:

• On one side, to present a general (but rather simple) algorithm based on

standard optimization methods to obtain the MinxEnt solutions . It can be ap-

plied to “general” densities: discrete and continuous, domains: bounded and

unbounded, and constraints, being able to manage mixed constraints problems.
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AIM

Aim of this talk is two-fold:

• On one side, to present a general (but rather simple) algorithm based on

standard optimization methods to obtain the MinxEnt solutions . It can be ap-

plied to “general” densities: discrete and continuous, domains: bounded and

unbounded, and constraints, being able to manage mixed constraints problems.

• On the other, to illustrate by means of two very different examples the way

the algorithm works , showing the (rather well known) good and accurate

behavior of the Minimum cross-entropy method (MinxEnt method) when ap-

plied to one-dimensional problems.
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The Problem and The MinxEnt solution

Generalized (one-dimensional) reduced “expectation-val ue” problem:

To construct approximations to a pdf , f : D ⊆ R → R+, from a finite set of

expectation values (i = 1, 2, . . . , n):
∫

D⊆R

f(x)dx = µ0 , 〈ki(x)〉[f ] :=

∫

D⊆R

ki(x)f(x)dx = µi ,

“Generalized” because not only expectation values of type

ki(x) = xi

are considered, but also

ki(x) = e−jpix or ki(x) = j0(pix)
and others.

Moreover “Mixed constraints” are also allowed.
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The Problem and The MinxEnt solution

Generalized (one-dimensional) reduced “expectation-val ue” problem:

To construct approximations to a pdf , f : D ⊆ R → R+, from a finite set of

expectation values (i = 1, 2, . . . , n):
∫

D⊆R

f(x)dx = µ0 , 〈ki(x)〉[f ] :=

∫

D⊆R

ki(x)f(x)dx = µi ,

The MinxEnt solution:

It is obtained by minimizing the relative entropy functional:

H[f : f0] =

∫

D⊆R

f(x) ln

[

f(x)

f0(x)

]

dx .

f0(x) ≡ prior information on f(x), such that
∫

D
f0(x)dx = µ0.
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The Problem and The MinxEnt solution

The MinxEnt solution:

In terms of Lagrange multipliers λ0 and L := (λ1, . . . , λn), the solution

fme
n (x) (if it exists) is:

fme
n (x) =

µ0 f0(x)

Z(L)
exp

{

−
n

∑

i=1

λi ki(x)

}

,

Partition function:

Z(L) := e−λ0 =

∫

D

f0(x) exp

{

−
n

∑

i=1

λi ki(x)

}

dx.

The Lagrange multipliers are solutions of the non-linear system:
∫

D

ki(x) fme
n (x) dx = µi , i = 1, . . . , n.
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The Problem and The MinxEnt solution

The MinxEnt solution:

Existence, convergence and some other interesting properties of the MinxEnt

solution have been widely studied in the literature. In this context and being non

exhaustive, it is worth-mentioning the work of Csiszàr 1975, Einbu 1977, John-

son and Shore 1979–1981, Borwein and Lewis 1993 or Tagliani 2003, among

others (see also J.C. Cuchı́ PhD Thesis (2005, in spanish), where a detailed

summary of that properties has been recently done).
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The Problem and The MinxEnt solution

The MinxEnt solution:

Dual Problem: The Lagrange multipliers are obtained by minimizing the relative

entropy (with a minus) of the MinxEnt solution

Γ(L) := −H[fme
n : f0] = −λ0 +

n
∑

i=1

λi µi

= µ0 ln Z(L) +

n
∑

i=1

λi µi − µ0 ln µ0,

which is a convex function of them.
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The Algorithm

A number of methods to deal with this optimization problem can be found in the

literature. Among others and being non-exhaustive:

• Darroch and Ratcliff 1972.

• Mead and Papanicolau 1984.

• Turek 1988.

• Borwein and Huang 1995.

• Drabold et al. 2005.

• ...

Two main difficulties:

• These algorithms are not ready to work with Mixed constraints.

• When the number of moments increase, there appears some numerical

instabilities.
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The Algorithm

A typical algorithm of unidirectional descending.
Starting from one initial feasible point L(0), a descending direction d

(k) is chosen on

each iteration by solving the system

H
(k) · d(k) = −∇Γ(L(k)) .

We have employed Newton’s algorithm and the BFGS or Broyden’s algorithm (a quasi-

Newton algorithm of rank 2).

Then a decision is taken on how much one should advance on the direction d
(k) using

line-search with backtracking.
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The Algorithm

Unbounded domains, e.g [0, +∞).
Our algorithm works in the following way

• First, it solves the problem for a set of finite intervals [0, a), with increasing values

of a, until the multiplier corresponding to the highest expectation value, 〈xn〉, is

positive and remains reasonably unchanged.

• Then, the solution for the highest value of a is used as a feasible initial value for the

Newton’s algorithm with a specific integration subroutine in unbounded intervals.
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The Algorithm

Difficulties.

• In some cases the Lagrange multipliers can have alternating signs and big

absolute values (e.g. when the interval is not bounded, or the moment sequence

increases fast enough).

• The Hessian matrix is ill conditioned.

To get round of this (at least partially) we have
used Tchebyshev polynomials for rewriting the

constraints in terms of them.
In most of the applications, it turns out that this strategy solve the multipliers problem at

the price to have big values for partition functions . Moreover, using quad-precision,

in most of the applications we have worked in detail, use of Tchebyshev polynomials

also avoid the ill conditioning Hessian problem.
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Example 1: Electron-pair density

Electron-pair density for the Helium atom: h(u).

• h(u) is the probability density associated to the inter-electronic vector

u = r1 − r2.

• Basic quantity in the study of the e−– e− correlation problem in many-electron

systems.

• h(u)du gives the probability of finding a pair of electrons with r1 − r2 between

u and u + du.

• In many cases, it is enough to consider its spherically averaged counterpart

h(u) :=
1

4π

∫

h(u) dΩu or H(u) := 4πu2 h(u) , u ∈ [0,+∞) .
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Example 1: Electron-pair density

Electron-pair density for the Helium atom: h(u).

• h(u) is the probability density associated to the inter-electronic vector

u = r1 − r2.

• Basic quantity in the study of the e−– e− correlation problem in many-electron

systems.

• h(u)du gives the probability of finding a pair of electrons with r1 − r2 between

u and u + du.

• In many cases, it is enough to consider its spherically averaged counterpart

h(u) :=
1

4π

∫

h(u) dΩu or H(u) := 4πu2 h(u) , u ∈ [0,+∞) .

Why these problem ?
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Example 1: Electron-pair density

Electron-pair density for the Helium atom: h(u).
1. Using the Hylleras-type atomic wave-functions (Koga 1993) it is possible to compute

accurately not only the density H(u) = 4πu2 h(u), but its expectation values

〈un〉 =

∫ +∞

0
unH(u)du = 4π

∫ +∞

0
un+2h(u)du , n = −2,−1, 0, 1, . . . ,

and also its Hankel transform (related to the total scattering intensity)

K(k) =

∫ +∞

0
H(u) j0(ku) du =

∫ +∞

0
4πu

sin ku

k
h(u) du, k ∈ R+ ,

where j0(ku) := sin ku/(ku) is the spherical Bessel function of order zero.

2. The overlap a priori function (Koga 1984):

hov(u) =

(

α

(1 + γu2)2
+

α(3 − γu2)

(1 + γu2)3
+

β(1 − γu2)

(1 + γu2)4

)

.

Alejandro Zarzo, U.P.M. MaxEnt, July 2006. The minimum cross-entropy method: A general algorithm for . .. – p. 15/35



Results onH(u) for Helium atom

NOTATION
Hn,m(u) := 4π u2 hn,m(u) with

hn,m(u) =
〈u−2〉h0(u)

Z(L)
exp







−
n

∑

i=1

λiu
i − 4π u

m
∑

j=1

λn+j

sin(kju)

kj







where h0(u) is the prior density (h0(u) = 1 if no prior information is considered).

So, Hn,m(x) is the MinxEnt (or MaxEnt) solution built

up using n moments (plus the normalization) and m

values of the Hankel transform.
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Results onH(u) for Helium atom
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——- H(u)

– – – H2,0(u)

Only moments (MaxEnt).
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Results onH(u) for Helium atom
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Results onH(u) for Helium atom
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Only moments (MaxEnt).
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Results onH(u) for Helium atom
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1.2
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——- exp{H(u)}
– – – exp{H6,0(u)}
Only moments (MaxEnt).
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Results onH(u) for Helium atom
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Mixed constraints (MaxEnt).
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Results onH(u) for Helium atom
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Mixed constraints (MaxEnt).
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Results onH(u) for Helium atom
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Mixed constraints (MaxEnt).
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Results onH(u) for Helium atom

0.5 1 1.5 2 2.5 3 3.5

0.1

0.2

0.3

0.4

0.5

0.6 ——- H(u)

– – – H2,3(u)

- - - - - HOV
2,3 (u)

Mixed constraints with prior overlap.
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Ex. 2: Spectrum of Jacobi matrices

A Jacobi matrix is a real, tridiagonal and symmetric matrix:

Jn :=























a1 b1

b1 a2 b2 0
b2 a3

. . .

. . .
. . . bn−1

0 bn−1 an























The characteristic polynomials Pn(x) := det(xIn − Jn) (n = 1, 2, . . .) satisfy a

three-term recurrence relation:

Pk+1(x) = (x − ak+1)Pk(x) − b2
kPk−1(x) , k = 1, 2, . . . , n − 1 ,

with initial conditions P0(x) = 1 and P1(x) = x − a1.
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Ex. 2: Spectrum of Jacobi matrices

The spectrum of Jn is fully characterized by the zero distribution of Pn(x) defined by

ρn(x) :=
1

n

n
∑

j=1

δ(x − xj) with moments µ(n)
r :=

1

n

n
∑

j=1

xr
j ,

where δ(x − xj) stands for the Dirac delta at the point xj and x1 < . . . < xn are

the real and simple zeros of Pn(x).

The moments µ
(n)
r (r = 0, 1, 2, . . .) can be recurrently computed (Zarzo et al.

1988), so the MaxEnt method can be used to approximate ρn(x).

To illustrate this we have chosen the well known Hermite poly nomials, Hn(x),

because from the differential equation that they satisfy (Zarzo et al. 2002):

• All the zeros of Hn(x) belongs to the interval (−
√

2n + 1,+
√

2n + 1).

• WKB approximation to the corresponding ρn(x):

ρ
(n)
wkb(x) :=

2

π

√
2n + 1 − x2

2n + 1
, x ∈ (−

√
2n + 1,+

√
2n + 1) .
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Hermite Polynomial of degree 200.

• Moments of the zero distribution of Hn(x): µ2j−1 = 0 (j = 1, 2, . . .) and

µ
(n)
0 = 1 , µ

(n)
2 =

n − 1

2

µ
(n)
4 =

n2

2
− 5n

4
+

3

4
, µ

(n)
6 =

5n3

8
− 11n2

4
+ 4n − 15

8

µ
(n)
8 =

7n4

8
− 93n3

16
+

117n2

8
− 65n

4
+

105

16
, . . .

• The MaxEnt solutions will be denoted by:

ρ(n)
r (x) :=

1

Z(L)
exp

{

−
r

∑

i=1

λi , xi

}

.

where n is the degree of the polynomial and r is the number of moments used

(excluding the normalization, which is always considered).
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Hermite Polynomial of degree 200.
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(200)
4 (x)
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Hermite Polynomial of degree 200.
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Hermite Polynomial of degree 200.
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Hermite Polynomial of degree 200.
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“Pseudo-MaxEnt" solutions

Hermite polynomial of degree 5: H5(x).
The ten first moments of the zero distribution of H5(x) fully characterize this

distribution, in such a way that it is the unique one having those moments.

Hence, MaxEnt solution ρ
(5)
10 (x) does not exists

(in general, ρ
(n)
2n neither do so)

and the algorithm gives no solution.
However, on running it, one can find several points in which the norm of the gradient is

small (≈ 10−6). We have called “Pseudo-MaxEnt solutions” to

the solutions corresponding to such values of the gradient.
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“Pseudo-MaxEnt" solutions

-3 -2 -1 1 2 3
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Pseudo-MaxEnt solution for H5(x).
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“Pseudo-MaxEnt" solutions

-3 -2 -1 1 2 3

0.00002

0.00004
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0.0001
Pseudo-MaxEnt solution for H5(x).
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Final

Why the MinxEnt method works so
nicely ?

THANKS
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