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⊛ Mars Express Mission: OMEGA spectro-imaging instrument

• cubes of 256 spectels, 256 lines and 2000 columns ⇒ more than 500 000 pixels,

• spatial resolution: ∼ 1 km,

• spectral resolution: ∼ 100 nm.



Outline

1. Observation model

2. Mixture models

3. Proposed approach and experimental results

4. Conclusions

S. Moussaoui – MaxEnt 2006, Paris, July 10th 3/14



1. Observation model

1.1 Geographical Mixture

L(x, y, λ) = Φ(λ)

La(λ) +
P∑

p=1

αp(x, y)Lp(λ)

 cos [θ(x, y)]

• L(x, y, λ): radiation measured by the sensor,

• Φ(λ): spectral atmospheric attenuation,

• θ(x, y): angle between the sunlight incidence vector and the surface normal,

• P : number of constituents,

• Lp(λ): reflectance of the p-th constituent,

• αp(x, y): weight of the p-th constituent,
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L(x, y, λ) =
P∑

p=1

α′
p(x, y)L

′
p(λ) + E(x, y, λ),

• α′
p(x, y) = αp(x, y) cos [θ(x, y)] −→ geometrical effect.

• L′
p(λ) = Φ(λ)Lp(λ),

• E(x, y, λ) = Φ(λ)La(λ) cos [θ(x, y)] .

– Geometrical effect: handled when estimating the abundances fractions

cp(x, y) =
α′

p(x, y)∑Nc
j=1α

′
j(x, y)

=
αp(x, y) cos[θ(x, y)]∑Nc

j=1αj(x, y) cos[θ(x, y)]
=

αp(x, y)∑Nc
j=1αj(x, y)

.

– Atmospheric attenuation: inherent in the spectra
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1.2 Data approximation models

~ Spectral mixing: each pixel of spatial index n = (x, y) gives a spectrum of Nf

frequency samples

In(λk) ≈
Nc∑

p=1

a(p,n)ψp(λk), ∀n = 1, ..., Nx ×Ny,

which leads to
I(λk) ≈ A ·Ψ(λk).

~ Spatial mixing: for each wavelength λk, the measured image Iλk
(n) is a weighted

sum of Nc basis images

Iλk
(n) ≈

Nc∑
p=1

b(λk,p)IIp(n), ∀k = 1, ..., Nf ,

which leads to
I(n) ≈ B · II(n).
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2. Separation using ICA and BPSS

2.1 Problem Statement

- independence assumption is not satisfied by the spatial/spectral sources,

- fast but leads negative components,

- positivity constraint can be ensured in a Bayesian source separation approach,

- requires MCMC methods: high computation cost due to the huge number of
spectral mixtures (pixels).

S. Moussaoui – MaxEnt 2006, Paris, July 10th 7/14



2. Separation using ICA and BPSS

2.1 Problem Statement

- independence assumption is not satisfied by the spatial/spectral sources,

- fast but leads negative components,

- positivity constraint can be ensured in a Bayesian source separation approach,

- requires MCMC methods: high computation cost due to the huge number of
spectral mixtures (pixels).

2.2 Proposed Approach

1. Spatial independent component analysis using JADE,

2. Selection of few relevant pixels using the ICA results,

3. Spectral Bayesian source separation with positivity constraint.
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2.3 Illustration with a Benchmark data set

~ Data : south polar cap of Mars. 300 lines, 128 columns and 184 spectels.

(a) λ = 0.95µm (b) λ = 2.61µm (c) λ = 3.45µm
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~ Spatial independent component analysis (with JADE)

SNR(n) = 10 log10

 ∑Nf

k=1 Iλk
(n)2∑Nf

k=1

(
Iλk

(n)−
∑Nc

p=1 a(λk,p)IIp(n)
)2

 .

(d) Minimum spatial SNR
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∗ Estimated independent components

(e) Component
1

(f) Component
2

(g) Component
3

(h) Component
4

(i) Component
5

∗ Estimated mixing coefficient profiles

(j) Component
1

(k) Component
2

(l) Component
3

(m) Component
4

(n) Component
5
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~ Selection of most relevant pixels

SNRj(n) = SNR(n)− 10 log10

 ∑Nf

k=1 Iλk
(n)2∑Nf

k=1

(
Iλk

(n)−
∑Nc

p=1,p 6=j a(λk,p)IIp(n)
)2

 .

(o) Component 1 (p) Component 2 (q) Component 3
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~ Bayesian spectral separation with positivity constraint

∗ Estimated spectral sources

(r) H2O ice (s) CO2 ice (t) dust

R =

[ 0.79 0.91 0.87
0.96 0.89 0.55
0.65 0.72 0.99

]
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∗ Estimated abundance fractions by BPSS

(u) H2O ice (v) CO2 ice (w) dust

∗ Estimated abundances by Wavelet classification

(x) H2O (y) CO2 (z) dust
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Conclusions and future works

– application of sources separation approaches to hyperspectral data analysis in the
case of geometrical mixtures,

– estimation of the number of spectral sources in the BPSS approach,

– modelling and analysis of hyperspectral data acquired from intimate mixtures
(non-linear mixing models),

– how to retrieve the atmospheric attenuation ?
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