Extrinsic Geometrical Methods for Neural Blind Deconvolution

Simone Fiori

fiori@deit.univpm.it

Dipartimento di Elettronica, Intelligenza Artificiale e Telecomunicazioni Università Politecnica delle Marche Ancona (Italy, EU)

Extrinsic Geometrical Methods for Neural Blind Deconvolution - p.1/34

 Blind deconvolution (BD): Signal model, basic assumptions, Bayesian ('Bussgang'-type) BD.

- Blind deconvolution (BD): Signal model, basic assumptions, Bayesian ('Bussgang'-type) BD.
- Automatic gain control (AGC): Source of geometrical structure of the parameter space.

- Blind deconvolution (BD): Signal model, basic assumptions, Bayesian ('Bussgang'-type) BD.
- Automatic gain control (AGC): Source of geometrical structure of the parameter space.
- Algorithms: Geodesic-based and projection-based.

- Blind deconvolution (BD): Signal model, basic assumptions, Bayesian ('Bussgang'-type) BD.
- Automatic gain control (AGC): Source of geometrical structure of the parameter space.
- Algorithms: Geodesic-based and projection-based.
 Numerical experiments and comparison.

BD: Channel Model

Channel output signal model:

$$x_n = \boldsymbol{h}^T \boldsymbol{s}_n + \boldsymbol{v}_n ,$$

• $s_n \stackrel{\text{def}}{=} [s_n \ s_{n-1} \ s_{n-2} \ \dots \ s_{n-L_h+1}]^T$ is the system's input vector-stream at time $n = 1, \dots, N$,

BD: Channel Model

Channel output signal model:

$$x_n = \boldsymbol{h}^T \boldsymbol{s}_n + \boldsymbol{v}_n ,$$

• $s_n \stackrel{\text{def}}{=} [s_n \ s_{n-1} \ s_{n-2} \ \dots \ s_{n-L_h+1}]^T$ is the system's input vector-stream at time $n = 1, \dots, N$,

 $= s_n$ denotes the sampled source signal,

BD: Channel Model

Channel output signal model:

$$x_n = \boldsymbol{h}^T \boldsymbol{s}_n + (\boldsymbol{\nu}_n),$$

 $s_n \stackrel{\text{def}}{=} [s_n \ s_{n-1} \ s_{n-2} \ \dots \ s_{n-L_n+1}]^T$ is the system's input vector-stream at time $n = 1, \dots, N$,

- s_n denotes the sampled source signal,
- ν_n represents a zero-mean white measurement disturbance independent of the source signal,

Channel output signal model:

$$x_n = \boldsymbol{h}^T \boldsymbol{s}_n + \boldsymbol{\nu}_n ,$$

• $s_n \stackrel{\text{def}}{=} [s_n \ s_{n-1} \ s_{n-2} \ \dots \ s_{n-L_h+1}]^T$ is the system's input vector-stream at time $n = 1, \dots, N$,

- $= s_n$ denotes the sampled source signal,
- ν_n represents a zero-mean white measurement disturbance independent of the source signal,
- L_h denotes the length of system impulse response h.

BD: Filter model

FIR filter output signal mode:

$$z_{m,n} = \boldsymbol{w}_m^T \boldsymbol{x}_n$$
,

 $w_m = [w_0 w_2 w_3 \dots w_{L_w-1}]^T$ denotes the filter's impulse response at learning-iteration $m = 1, \dots, M$,

FIR filter output signal mode:

$$z_{m,n} = \boldsymbol{w}_m^T \boldsymbol{x}_n$$
,

 $w_m = [w_0 w_2 w_3 \dots w_{L_w-1}]^T$ denotes the filter's impulse response at learning-iteration $m = 1, \dots, M$, def_{Γ}

• $x_n \stackrel{\text{def}}{=} [x_n \ x_{n-1} \ x_{n-2} \ \dots \ x_{n-L_w+1}]^T$ denotes the filter input samples at time $n = 1, \dots, N$, FIR filter output signal mode:

$$z_{m,n} = \boldsymbol{w}_m^T \boldsymbol{x}_n$$
,

 $w_m = [w_0 w_2 w_3 \dots w_{L_w-1}]^T$ denotes the filter's impulse response at learning-iteration $m = 1, \dots, M$,

• $x_n \stackrel{\text{def}}{=} [x_n \ x_{n-1} \ x_{n-2} \ \dots \ x_{n-L_w+1}]^T$ denotes the filter input samples at time $n = 1, \dots, N$,

 L_{w} denotes the length of the filter impulse response.

Channel-filter cascade output model:

$$z_{m,n} = c_m s_{n-\delta_m} + \mathcal{N}_{m,n} ,$$

where:

 $= c_m$ denotes instantaneous amplitude distortion,

Channel-filter cascade output model:

$$z_{m,n} = c_m s_{n-\delta_m} + \mathcal{N}_{m,n} ,$$

where:

c_m denotes instantaneous amplitude distortion,
 δ_m instantaneous group delay,

Channel-filter cascade output model:

$$z_{m,n}=c_ms_{n-\delta_m}+\left(\mathcal{N}_{m,n}\right),$$

where:

c_m denotes instantaneous amplitude distortion,
 δ_m instantaneous group delay,
 N_{m,n} denotes so-termed deconvolution noise:

Channel-filter cascade output model:

$$z_{m,n}=c_ms_{n-\delta_m}+\left(\mathcal{N}_{m,n}\right),$$

where:

c_m denotes instantaneous amplitude distortion,
 δ_m instantaneous group delay,
 N_{m,n} denotes so-termed deconvolution noise:
 zero-mean, white, Gaussian random process,

Channel-filter cascade output model:

$$z_{m,n}=c_ms_{n-\delta_m}+\left(\mathcal{N}_{m,n}\right),$$

where:

c_m denotes instantaneous amplitude distortion,
 δ_m instantaneous group delay,
 N_{m,n} denotes so-termed deconvolution noise:
 zero-mean, white, Gaussian random process,
 incorrelated with the source signal.

Channel's impulse response satisfies $h^T h = 1$ and its inverse has finite energy.

Channel's impulse response satisfies $h^T h = 1$ and its inverse has finite energy.

Channel is time-invariant or slowly time-varying.

- Channel's impulse response satisfies $h^T h = 1$ and its inverse has finite energy.
- **Channel is time-invariant or slowly time-varying.**
- Source stream s_n is a stationary, ergodic, independent identically distributed (IID) random process with mean $\mathbb{E}_s[s_n] = 0$ and variance $\mathbb{E}_s[s_n^2] = 1$.

- Channel's impulse response satisfies $h^T h = 1$ and its inverse has finite energy.
- **Channel is time-invariant or slowly time-varying.**
- Source stream s_n is a stationary, ergodic, independent identically distributed (IID) random process with mean $\mathbb{E}_s[s_n] = 0$ and variance $\mathbb{E}_s[s_n^2] = 1$.
- The probability density function $p_s(s)$ of the source signal is symmetric around zero and **non-Gaussian**.

Equalization of communication channels.

Equalization of communication channels.

Optomagnetic memory-support storage and retrieval enhancement.

Equalization of communication channels.

- Optomagnetic memory-support storage and retrieval enhancement.
- Image deblurring.

Equalization of communication channels.

- Optomagnetic memory-support storage and retrieval enhancement.
- Image deblurring.
- Geophysical measurements analysis.

BD: Bussgang filtering

The model reveals that the relationship between $z_{m,n}$ and $c_m s_{n-\delta_m}$ is deterministic but for the deconvolution noise.

BD: Bussgang filtering

The model reveals that the relationship between $z_{m,n}$ and $c_m s_{n-\delta_m}$ is deterministic but for the deconvolution noise.

The model reveals that the relationship between $z_{m,n}$ and $c_m s_{n-\delta_m}$ is deterministic but for the deconvolution noise.

An estimator of the source sequence having form $B(z_{m,n})$ can be designed according to Bayesian estimation theory.

BD: Filter Structure

A 'Virtuous Cycle'

BD as Optimization Problem

On the basis of the available Bayesian estimator, the error criterion may be minimized:

$$C(\boldsymbol{w}_m) \stackrel{\text{def}}{=} \frac{1}{2} \mathbb{E}_{\mathcal{N}_{m,n}}[\mathcal{N}_{m,n}^2] = \frac{1}{2} \mathbb{E}_{z_{m,n}}\left[\left(z_{m,n} - B(z_{m,n}) \right)^2 \right] \,.$$

Thanks to ergodicity, the ensemble average $\mathbb{E}[\cdot]$ is estimated by:

$$\mathbb{E}_{z_{m,n}}[\Phi(z_{m,n})] \approx \frac{1}{N} \sum_{n=1}^{N} \Phi(z_{m,n}) ,$$

for any vector-valued function $\Phi : \mathcal{R} \to \mathcal{R}^p$.

BD: Automatic Gain Control

For practical reasons, it is customary to set the energy-contraint:

$$w_0^2 + w_2^2 + w_3^2 + \dots + w_{L_w-1}^2 = 1$$
.

Namely, the filter's impulse response should belong – at any time – to the unit hyper-sphere:

$$S^{p-1} \stackrel{\text{def}}{=} \{ \boldsymbol{v} \in \mathcal{R}^p | \boldsymbol{v}^T \boldsymbol{v} = 1 \} .$$

Geometry of *S*^{*p*-1}

At every point $v \in S^{p-1}$, the tangent space has structure:

$$T_{\boldsymbol{v}}S^{p-1} \stackrel{\text{def}}{=} \{ \boldsymbol{u} \in \mathcal{R}^p | \boldsymbol{u}^T \boldsymbol{v} = 0 \} .$$

If $S^{p-1} \hookrightarrow \mathcal{R}^p$, which is equipped with the standard Euclidean metric, then the normal space has structure:

$$N_{\mathbf{v}}S^{p-1} \stackrel{\text{def}}{=} \{\lambda \mathbf{v} | \lambda \in \mathcal{R}\}.$$

Riemannian Gradient on S^{p-1}

Riemannian gradient of a smooth function $f: S^{p-1} \to \mathcal{R}$ is a vector $\nabla_{v}^{S^{p-1}} f$ that satisfies:

Tangency:
$$\nabla_{v}^{S^{p-1}} f \in T_{v}S^{p-1}$$
,
Compatibility: $\langle \nabla_{v}^{S^{p-1}} f, u \rangle_{v} = \left(\frac{\partial f}{\partial v}\right)^{T} u, \forall u \in T_{v}S^{p-1}$.
With the above setting:

vith the above setting.

$$\nabla_{\boldsymbol{v}}^{S^{p-1}} f = (\boldsymbol{I}_p - \boldsymbol{v}\boldsymbol{v}^T) \frac{\partial f}{\partial \boldsymbol{v}} .$$

Geodesics on S^{p-1}

A geodesic $v(t) = G(t, v_0, g)$ is a curve on which a particle, amanating from v_0 with velocity g, slides with constant scalar speed ||g||.

$$\ddot{v} \in N_{v}S^{p-1},$$

 $v(0) = v_{0} \in S^{p-1},$
 $\dot{v}(0) = g \in T_{v_{0}}S^{p-1}$

The solution is:

$$G(t, \mathbf{v}_0, \mathbf{g}) = \cos(||\mathbf{g}||t)\mathbf{v}_0 + \sin(||\mathbf{g}||t)\frac{\mathbf{g}}{||\mathbf{g}||}.$$

$\nabla_{v}^{S^{p-1}}$ -based Optimization

As an optimization law for searching for the minimum (or local minima) of a regular function $f: S^{p-1} \to \mathcal{R}$ over S^{p-1} , we may use the Riemannian-gradient based rule:

$$\begin{cases} \frac{d\mathbf{v}}{dt} = -\nabla_{\mathbf{v}}^{S^{p-1}} f ,\\ \mathbf{v}(0) = \mathbf{v}_0 \in S^{p-1} .\end{cases}$$
BD: Geodesic-based Rule

The general-purpose differential equation may be customized as:

$$\frac{d\boldsymbol{w}}{dt} = -(\boldsymbol{I}_p - \boldsymbol{w}\boldsymbol{w}^T)\frac{\partial C(\boldsymbol{w})}{\partial \boldsymbol{w}},$$

with $p = L_w$ and:

$$\begin{cases} \frac{\partial C(w)}{\partial w} = \mathbb{I} \mathbb{E}_{x}[\gamma(z)x], \\ \gamma(z) \stackrel{\text{def}}{=} (B(z) - z)(B'(z) - 1). \end{cases}$$

BD: Geodesic-based Algorithm

It is suggested to approximate the exact flow of the differential equation on a manifold via piece-wise geodesic arcs:

$$\boldsymbol{w}_{m} = G\left(t_{m}, \boldsymbol{w}_{m-1}, -\nabla_{\boldsymbol{w}_{m-1}}^{S^{p-1}}C(\boldsymbol{w})\right), \ m \in \{1, \ldots, M\}.$$

where:

 t_m denotes an appropriate sequence of adaptation stepsizes,

BD: Geodesic-based Algorithm

It is suggested to approximate the exact flow of the differential equation on a manifold via piece-wise geodesic arcs:

$$w_m = G(t_m, w_{m-1}, -\nabla_{w_{m-1}}^{S^{p-1}}C(w)), m \in \{1, \ldots, M\}.$$

where:

 t_m denotes an appropriate sequence of adaptation stepsizes,

■ $w_0 \in S^{p-1}$ is arbitrarily selected.

BD: Geodesic-based Algorithm

It is suggested to approximate the exact flow of the differential equation on a manifold via piece-wise geodesic arcs:

$$\boldsymbol{w}_{m} = G\left(t_{m}, \boldsymbol{w}_{m-1}, -\nabla_{\boldsymbol{w}_{m-1}}^{S^{p-1}}C(\boldsymbol{w})\right), \ m \in \{1, \ldots, M\}.$$

where:

- t_m denotes an appropriate sequence of adaptation stepsizes,
- $w_0 \in S^{p-1}$ is arbitrarily selected.

■ *Up to numerical error*, $w_m \in S^{p-1}$ at every iteration.

BD: Projection-based algorithm

By the embedding $S^{p-1} \hookrightarrow \mathcal{R}^p$, updates along the Euclidean gradient direction:

$$\boldsymbol{w}_{m} = \Pi \left(\boldsymbol{w}_{m-1} - t_{m} \left. \frac{\partial C(\boldsymbol{w})}{\partial \boldsymbol{w}} \right|_{\boldsymbol{w}=\boldsymbol{w}_{m-1}} \right), \quad \Pi \left(\boldsymbol{v} \right) \stackrel{\text{def}}{=} \frac{\boldsymbol{v}}{\sqrt{\boldsymbol{v}^{T} \boldsymbol{v}}}$$

where:

 t_m denotes an appropriate sequence of adaptation stepsizes,

BD: Projection-based algorithm

By the embedding $S^{p-1} \hookrightarrow \mathcal{R}^p$, updates along the Euclidean gradient direction:

$$\boldsymbol{w}_{m} = \Pi \left(\boldsymbol{w}_{m-1} - t_{m} \left. \frac{\partial C(\boldsymbol{w})}{\partial \boldsymbol{w}} \right|_{\boldsymbol{w}=\boldsymbol{w}_{m-1}} \right), \quad \Pi \left(\boldsymbol{v} \right) \stackrel{\text{def}}{=} \frac{\boldsymbol{v}}{\sqrt{\boldsymbol{v}^{T} \boldsymbol{v}}}$$

where:

 t_m denotes an appropriate sequence of adaptation stepsizes,

■ $w_0 \in S^{p-1}$ is arbitrarily selected,

BD: Projection-based algorithm

By the embedding $S^{p-1} \hookrightarrow \mathcal{R}^p$, updates along the Euclidean gradient direction:

$$\boldsymbol{w}_{m} = \prod \left(\left. \boldsymbol{w}_{m-1} - t_{m} \left. \frac{\partial C(\boldsymbol{w})}{\partial \boldsymbol{w}} \right|_{\boldsymbol{w}=\boldsymbol{w}_{m-1}} \right), \quad \prod (\boldsymbol{v}) \stackrel{\text{def}}{=} \frac{\boldsymbol{v}}{\sqrt{\boldsymbol{v}^{T}\boldsymbol{v}}}$$

where:

- t_m denotes an appropriate sequence of adaptation stepsizes,
- $w_0 \in S^{p-1}$ is arbitrarily selected,
- $\blacksquare \Pi : \mathcal{R}^p \to S^{p-1} \text{ is the selected back-projector.}$

If the time to within the geodesic is extended is short enough, the geodesic-based algorithm traces the Riemannian-gradient flow.

In fact, for *t* small enough, the S^{p-1} -geodesic may be approximated as:

$$G(t, \mathbf{v}_0, \mathbf{g}) \approx \left(1 - \frac{\|\mathbf{g}\|^2 t^2}{2}\right) \mathbf{v}_0 + \mathbf{g}t,$$

which gives rise to the expression:

$$\frac{w_m - w_{m-1}}{t} \approx -\frac{\|\nabla_{w_{m-1}}^{S^{p-1}} C(w)\|^2 t}{2} w_{m-1} - \nabla_{w_{m-1}}^{S^{p-1}} C(w) .$$

The source stream s_n is IID. After passing through the channel, the samples gain second-order statistical correlation.

Second-order correlation is easy to remove by data pre-whitening. Let us define:

$$\boldsymbol{R}_{\boldsymbol{x}\boldsymbol{x}} \stackrel{\text{def}}{=} \mathbb{E}_{\boldsymbol{x}_n} [\boldsymbol{x}_n \boldsymbol{x}_n^T] \ .$$

Whitened filter-input vector-stream:

$$\hat{\boldsymbol{x}}_n \stackrel{\text{def}}{=} \boldsymbol{R}_{\boldsymbol{x}\boldsymbol{x}}^{-\frac{1}{2}} \boldsymbol{x}_n$$

Collect the filter-input stream and build-up the multivariate stream x_n .

Collect the filter-input stream and build-up the multivariate stream x_n .

Whiten the multivariate signal x_n .

- Collect the filter-input stream and build-up the multivariate stream x_n .
- Whiten the multivariate signal x_n .
- Choose a starting point for the inverse filter impulse response w_0 and learning parameters.

- Collect the filter-input stream and build-up the multivariate stream x_n .
- Whiten the multivariate signal x_n .
- Choose a starting point for the inverse filter impulse response w₀ and learning parameters.
- Compute the final inverse filter impulse response w_M by the geodesic-based algorithm or the projection-based algorithm applied to the whitened input stream.

Figures of Performance

Residual inter-symbol interference (ISI):

$$\text{ISI}_m \stackrel{\text{def}}{=} \frac{\boldsymbol{T}_m^T \boldsymbol{T}_m - \boldsymbol{T}_{m,\text{max}}^2}{\boldsymbol{T}_{m,\text{max}}^2} ,$$

where $T_m \stackrel{\text{def}}{=} h \otimes w_m$ and $T_{m,\max}$ denotes the component of T_m having maximal absolute value.

Figures of Performance

Residual inter-symbol interference (ISI):

$$\text{ISI}_m \stackrel{\text{def}}{=} \frac{\boldsymbol{T}_m^T \boldsymbol{T}_m - \boldsymbol{T}_{m,\text{max}}^2}{\boldsymbol{T}_{m,\text{max}}^2} ,$$

where $T_m \stackrel{\text{def}}{=} h \otimes w_m$ and $T_{m,\max}$ denotes the component of T_m having maximal absolute value. Elapsed run-time on a 1.86GHz – 512MB platform.

Figures of Performance

Residual inter-symbol interference (ISI):

$$\text{ISI}_m \stackrel{\text{def}}{=} \frac{\boldsymbol{T}_m^T \boldsymbol{T}_m - \boldsymbol{T}_{m,\text{max}}^2}{\boldsymbol{T}_{m,\text{max}}^2} ,$$

where T_m ^{def} h ⊗ w_m and T_{m,max} denotes the component of T_m having maximal absolute value.
Elapsed run-time on a 1.86GHz – 512MB platform.
Flops (counted by Matlab[©] 5.3).

Source and Bayesian Estimator

- It is assumed that s_n is a white random signal, uniformly distributed within $[-\sqrt{3}, +\sqrt{3}]$, counting N = 5,000 samples.
- In this case, a suitable Bayesian estimator is $\hat{B}(z) = \kappa \tanh(\lambda z).$

Parameters κ and λ may be pre-learnt on the basis, e.g., of the procedure introduced in S. FIORI, *Analysis of modified 'Bussgang' algorithms (MBA) for channel equalization*, IEEE Trans. on Circuits and Systems - Part I, Vol. 51, No. 8, pp. 1552 – 1560, August 2004.

Experiments on a Toy Channel

- The channel's impulse response is $h = [1] (L_h = 1)$ and the base manifold is $S^2 (L_w = 3)$.
- In this experiment, the channel-filter-cascade impulse response $T_m = h \otimes w_m = w_m$.
- If we let the learning trajectories depart from randomly generated w₀ ∈ S², they should eventually converge to one of the six attractors [±1 0 0]^T, [0 ± 1 0]^T or [0 0 ± 1]^T.

Toy Channel – Geodesic

Numerical results on 100 independent trials, M = 100 learning iterations per trial, learning stepsize 0.5.

Toy Channel – Projection

Numerical results on 100 independent trials, M = 100 learning iterations per trial, learning stepsize 0.9.

Experiments on Telephonic Channel

Sampled telephonic channel having duration $L_h = 14$.

Filter of length $L_w = 14$.

Filter of length $L_w = 14$. $w_0 = [0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0]^T$.

Filter of length L_w = 14.
w₀ = [0 0 0 0 0 0 1 0 0 0 0 0 0 0]^T.
Noiseless channel (i.e., with v_n = 0 identically).

Filter of length $L_w = 14$.

 $w_0 = [0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0]^T.$

- Noiseless channel (i.e., with $v_n \equiv 0$ identically).
- Learning stepsize: 1 for the geodesic-based algorithm and 0.9 for the projection-based algorithm.

Filter of length $L_w = 14$.

 $w_0 = [0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0]^T.$

- Noiseless channel (i.e., with $v_n \equiv 0$ identically).
- Learning stepsize: 1 for the geodesic-based algorithm and 0.9 for the projection-based algorithm.
- Learning iterations: M = 80 for both algorithms.

Experiments on BGR: Results

Algorithms were run on the same batch of 5,000 channel output samples.

Algorithms were run on the same batch of 5,000 channel output samples.

learning iterations: M = 50.

- Algorithms were run on the same batch of 5,000 channel output samples.
- learning iterations: M = 50.
- The flops count refers to the number of floating point operations required by the implemented code to run, averaged over the total number of samples passing by $(5,000 \times 50)$.

- Algorithms were run on the same batch of 5,000 channel output samples.
- learning iterations: M = 50.
- The flops count refers to the number of floating point operations required by the implemented code to run, averaged over the total number of samples passing by $(5,000 \times 50)$.
- The time count refers to the total time required by each algorithm to run on the specified platform.

Complexity Comparison: Results

Results of computational-complexity comparison of the geodesic-based algorithm and the projection-based algorithm.

AL GORITHM	ISI (dB)	Flops	Time (sec.s)
Geodesic-based	-25.057	80.594	0.328
Projection-based	-25.056	81.582	0.313

Both algorithms are well-behaving.

Summary

Both algorithms are well-behaving.

The deconvolution performances are comparable for the two algorithms.

Summary

Both algorithms are well-behaving.

- The deconvolution performances are comparable for the two algorithms.
- The geodesic-based algorithm may exhibit steadier convergence.

Summary

- Both algorithms are well-behaving.
- The deconvolution performances are comparable for the two algorithms.
- The geodesic-based algorithm may exhibit steadier convergence.
- The projection-based algorithm may be slightly lighter from a computational point of view.
Many thanks to...

The organizers and E.T. Jaynes Foundation!

Many thanks to...

The organizers and E.T. Jaynes Foundation!Everybody for the kind attention!

Many thanks to...

The organizers and E.T. Jaynes Foundation!
Everybody for the kind attention!
The Italian team for winning the World Cup!!!!