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Talk overview

= Blind deconvolution (BD): Signal model, basic
assumptions, Bayesian (‘Bussgang’-type) BD.
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Blind deconvolution (BD): Signal model, basic
assumptions, Bayesian (‘Bussgang’-type) BD.

Automatic gain control (AGC): Source of
geometrical structure of the parameter space.

Algorithms: Geodesic-based and projection-based.
Numerical experiments and comparison.
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BD: Channel Model

Channel output signal model:

Xn:hTSn+ Vn

def T L.
" S =[S S-1S5-2 .- S-L.+1] IS the system’s input
vector-stream attime=1,..., N,
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BD: Channel Model

Channel output signal model:

Xn:hTSn+ Vn

def T L.
" S =[S S-1S5-2 .- S-L.+1] IS the system’s input
vector-stream attime=1,..., N,

» S, denotes the sampled source signal,
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Channel output signal model:

Xn:hTSn+ Vn

def -T : y -
=[s, Sh-1 sn 2 ... S-1.+1] IS the system’s input
vector Stream at t ma 1,....N,

S, denotes the sampled source signal,

Vnh Fepresents a zero-mean white measurement
disturbance independent of the source signal,
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Channel output signal model:

Xn:hTSn+ Vn

def T -
Sh=[S Sh-1 S—2 ... Sn-L.+1] IS the system’s input
vector-stream attime=1,..., N,

s, denotes the sampled source signal,

Vnh Fepresents a zero-mean white measurement
disturbance independent of the source signal,

L, denotes the length of system impulse respdnse
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BD: Filter model

FIR filter output signal mode:

T
Imn = WmnXn ,

® W = [WoWo Wz ... W _1]" denotes the filter's
Impulse response at learning-iteratior= 1, ..., M,
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FIR filter output signal mode:
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FIR filter output signal mode:
Zimn = WinXn ,

Win = [Wo Wo W3 ... Wi, _1]" denotes the filter's
Impulse response at learning-iterationr= 1, ..., M,

X = [Xn Xn1 Xn_2 - - - Xn_L..1]T denotes the filter
Input samples attime=1,..., N,

L,y denotes the length of the filter impulse response.
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BD: Channel-Filter Model

Channel-filter cascade output model:

Imn = CmSn—ém + Nm,n )

where:
® Cy, denotes instantaneous amplitude distortion,
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BD: Channel-Filter Model

Channel-filter cascade output model:

Imn = CmSw—ém + Nm,n )

where:
® Cy, denotes instainianeous amplitude distortion,
® Oy, INStantaneous group delay,
= Nmn denotes so-termed deconvolution noise:
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Channel-filter cascade output model:

Znn = CnSh-s.. + Nmn

where:
Cm denotes instainianeous amplitude distortion,
o INStantaneous group delay,

Nmn denotes so-termed deconvolution noise:
zero-mean, white, Gaussian random process,
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Channel-filter cascade output model:

Znn = CnSh-s.. + Nmn

where:
Cm denotes instainianeous amplitude distortion,
o INStantaneous group delay,

Nmn denotes so-termed deconvolution noise:
zero-mean, white, Gaussian random process,
iIncorrelated with the source signal.
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BD: Basic Hypotheses

= Channel’'s impulse response satisteé$ = 1 and its
Inverse has finite energy.
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BD: Basic Hypotheses

= Channel’'s impulse response satisteé$ = 1 and its
Inverse has finite energy.

= Channel is time-invariant or slowly time-varying.
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Channel’s impulse response satisfie$ = 1 and its
Inverse has finite energy.

Channel is time-invariant or slowly time-varying.

Source streams, Is a stationary, ergodic,
Independent identically distributed (1ID) random
process with mean §s,] = 0 and variance

Eds] = 1.
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Channel’s impulse response satisfie$ = 1 and its
Inverse has finite energy.

Channel is time-invariant or slowly time-varying.

Source streams, Is a stationary, ergodic,
Independent identically distributed (1ID) random
process with mean §s,] = 0 and variance

Es] = 1.

The probabillity density functiopg(s) of the source
signal iIs symmetric around zero andn-Gaussian

Extrinsic Geometrical Methods for Neural Blind Deconvadat— p.634



\pplications

gqualization of communication channels.



BD: Applications

= Equalization of communication channels.

= Optomagnetic memory-support storage and retrieval
enhancement.
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Equalization of communication channels.

Optomagnetic memory-support storage and retrieval
enhancement.

Image deblurring.
Geophysical measurements analysis.
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BD: Bussgang filtering

The model reveals that the relationship betwaghand
CnSh—s.. IS deterministic but for the deconvolution noise.
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The model reveals that the relationship betweghand
CmSh—s., IS deterministic but for the deconvolution noise.

An estimator of the source sequence having f@(®,n)
can be designed according to Bayesian estimation theon
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On the basis of the available Bayesian estimator, the
error criterion may be minimized:

C(w m)d—efl|ENmn[N2 nl = 1-IEzmn [(Zmn B(Zm,n))z] :

Thanks to ergodicity, the ensemble averagq §|
estimated by:

\
., [0 ~ 3 D ®zms)
n=1

for any vector-valued functio® : R — RP.
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BD: Automatic Gain Control

For practical reasons, it Is customary to set the
energy-contraint:

WG+ W5+ W+ + WS =1

Namely, the filter’'s impulse response should belong — at
any time — to the unit hyper-sphere:

sP-1%€y ¢ RPVTY = 1) .
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At every pointv € SP~1, the tangent space has
structure:

T,SP 2% u e RPUTv = 0} .
If SP~1 < RP, which is equipped with the standard

Euclidean metric, then the normal space has
structure:

N,SP1E" via e R)
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Riemannian Gradient on SP-1

Riemannian gradient of a smooth functibn SP~* — R
is a vectorvS” " f that satisfies:

= TangencyV>" ' f € T,SP L,

= Compatibility: (V" ", ), = (2)" u, vu € T,SPL.

With the above setting:

= of
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A geodesio/(t) = G(t, vp, g) IS a curve on which a
particle, amanating fromy with velocity g, slides with
constant scalar spedd]|.

(Ve N,SP1,
v(0) = vp € SP1,
V(0)=geT,S".

A\

The solution Is:

9

G(t, vo, 9) = cos(|gl[t)vo + sin(llgllt)|| ol
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As an optimization law for searching for the minimum
(or local minima) of a regular functioh : SP~t — R
overSP-1, we may use the Riemannian-gradient based

rule:
p—-1
a =-V>'f,
v(O)_voeSp L
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BD: Geodesic-based Rule

The general-purpose differential equation may be
customized as:

d_vv -, - )GC(W)
dt OW
with p = L, and.:

LW E [y,

(9W

| Y0%(8@ - 2B @) -1).

Extrinsic Geometrical Methods for Neural Blind Deconvadat— p.1734



BD: Geodesic-based Algorithm

It IS suggested to approximate the exact flow of the
differential equation on a manifold via piece-wise
geodesic arcs:

1

o
Wm =G (tma Wm-1, —V\,Svm

-1

C(W)) ., me{l, ..., M}.

where:

= t, denotes an appropriate sequence of adaptation
stepsizes,
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It IS suggested to approximate the exact flow of the
differential equation on a manifold via piece-wise

geodesic arcs:
Win = G (tm, Win-1,— Vi, .C(W)) . me {1,.... M}

where:

t, denotes an appropriate sequence of adaptation
stepsizes,

Wop € SP~1is arbitrarily selected.
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It IS suggested to approximate the exact flow of the
differential equation on a manifold via piece-wise

geodesic arcs:
Win = G (tm, Win-1,— Vi, .C(W)) . me {1,.... M}

where:

t, denotes an appropriate sequence of adaptation
stepsizes,

Wop € SP~1is arbitrarily selected.
Up to numerical errorwy, € SP~1 at every iteration.
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BD: Projection-based algorithm

By the embeddingP! — RP, updates along the
Euclidean gradient direction:

oC(w) def V
- H 1 — t H — -
o (Wm Y W_Wml) , N WTv

where:

= t, denotes an appropriate sequence of adaptation
stepsizes,
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BD: Projection-based algorithm

By the embeddingP! — RP, updates along the
Euclidean gradient direction:

oC(w %
aW W=Wmn-1 VVTV
where:
= t, denotes an appropriate sequence of adaptation
stepsizes,

= Wp € SP~1 is arbitrarily selected,
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By the embeddingP! — RP, updates along the
Euclidean gradient direction:

oC(w) def V
Wmn = Il W1 —t , 11 (V)= :
i (ml " ow W_Wml) Y Vv
where:
I, denotes an appropriate sequence of adaptation
stepsizes,

Wp € SP1is arbitrarily selected,
I1: RP — SP1is the selected back-projector.
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If the time to within the geodesic is extended is short
enough, the geodesic-based algorithm traces the
Riemannian-gradient flow.

In fact, fort small enough, th&P-1-geodesic may be
approximated as:

242
G(t, Vo, g) ~ (1— ”ggt )VO+ gt ,

which gives rise to the expression:

Wi, — Win VS C(w)lIt B
m : m1z 2( ) Wm—l—Vsp 1C(W).
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The source stream, is |[ID. After passing through the

channel, the samples gain second-order statistical
correlation.

Second-order correlation is easy to remove by data
pre-whitening. Let us define:

def
RXX — IEXn[XnX-rl]—] .

Whitened filter-input vector-stream:

~ def -1
Xn = Rx>%xn .
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BD Algorithms at a Glance

» Collect the filter-input stream and build-up the
multivariate streanx.
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BD Algorithms at a Glance

» Collect the filter-input stream and build-up the
multivariate streanx.

= Whiten the multivariate signa,.

= Choose a starting point for the inverse filter impulse
responseavy and learning parameters.
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Collect the filter-input stream and build-up the
multivariate streanx,,.

Whiten the multivariate signa,.

Choose a starting point for the inverse filter impulse
responsavp and learning parameters.

Compute the final inverse filter impulse respongge
by the geodesic-based algorithm or the
projection-based algorithm applied to the whitened
Input stream.
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Figures of Performance

= Residual inter-symbol interference (ISl):

T 2
def Tme i Tm,max
ISIm — > -

m,max

def
whereTm= h ® Wy and Tmmax denotes the
component ofl ,, having maximal absolute value.
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Residual inter-symbol interference (ISI):

|S|m d:ef TTT Tr% max ,

2
Tm,max

def
whereTm= h ® Wy and Tmmax denotes the
component ofl ,, having maximal absolute value.

Elapsed run-time on a 1.86GHz — 512MB platform.
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Residual inter-symbol interference (ISI):

dot TmTm—TZ

M, max

o

2
Tm,max

def
whereTm= h ® Wy and Tmmax denotes the
component ofl ,, having maximal absolute value.

Elapsed run-time on a 1.86GHz — 512MB platform.
Flops (counted by Matla 5.3).
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It Is assumed thad, Is a white random signal,

uniformly distributed within F V3, + V3], counting
N = 5,000 samples.

In this case, a suitable Bayesian estimator Is
B(2) = ktanh(12).

Parameters andA may be pre-learnt on the basis,
e.g., of the procedure introducedsnFori, Analysis
of modified ‘Bussgang’ algorithms (MBA) for channel
equalization IEEE Trans. on Circuits and Systems - Part |, Vol.
51, No. 8, pp. 1552 — 1560, August 2004.
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The channel’s impulse responsenis- [1] (L, = 1)
and the base manifold 87 (L,, = 3).

In this experiment, the channel-filter-cascade
Impulse responsé,, = h ® Wy = W,

If we let the learning trajectories depart from
randomly generatedy € S, they should eventually

converge to one of the six attractorsi0 0],
[0 +10]" or[00 +1]".
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Numerical results on 100 independent tridds= 100
learning iterations per trial, learning stepsizg.0

o)
N

\JLHI.U = < L

| Se—

Neuron weight w, Neuron weight w,
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Numerical results on 100 independent tridds= 100
learning iterations per trial, learning stepsiz8.0

o
2
z
c
o
[]
2
c
o]
g
>
[J]
4

Neuron weight w, Neuron weight w,
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Sampled telephonic channel having duratign= 14.

Zeros of BGR channel Channel amplitude frequency response

Imaginary Part
IHE")! (dB)

0 -2 0
Real Part w

Approximate inverse BGR channel Channel phase frequency response

—~
he]
©
=
g
()
SN—r
L.
[=2)
p—
©

Extrinsic Geometrical Methods for Neural Blind Deconvadat— p.2834



riments on BGR: Data

lter of lengthL,, = 14.



riments on BGR: Data

lter of lengthL,, = 14.
,=[00000010000000]



EXperiments on BGR: Data

= Filter of lengthL,, = 14.

=Wo=[00000010000000]
= Noiseless channel (i.e., with, = O identically).
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EXperiments on BGR: Data

= Filter of lengthL,, = 14.
=Wo=[00000010000000]

= Noiseless channel (i.e., with, = O identically).

= Learning stepsize: 1 for the geodesic-based
algorithm and ® for the projection-based
algorithm.
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Filter of lengthL,, = 14.

Wo=[00000010000000]

Noiseless channel (i.e., with, = 0 identically).

Learning stepsize: 1 for the geodesic-based
algorithm and ® for the projection-based

algorithm.
Learning iterationsM = 80 for both algorithms.
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Cost function C(w

40
Iterations Iterations

*
hWM

Filter impulse response Wy
Convolution TM

|
o
N

|
o©
N

1 2 3 45 6 7 8 9 101112 13 0 20
Discrete—time index n Discrete—time index n
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Numerical Complexity Comparison

= Algorithms were run on the same batch 9080
channel output samples.
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Numerical Complexity Comparison

= Algorithms were run on the same batch 9080
channel output samples.

= learning iterationsM = 50.

Extrinsic Geometrical Methods for Neural Blind Deconvadat— p.3%34



Algorithms were run on the same batch 9080
channel output samples.

learning iterationsM = 50.

The flops count refers to the number of floating
point operations required by the implemented code
to run, averaged over the total number of samples
passing by (5000x 50).
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Algorithms were run on the same batch 9080
channel output samples.

learning iterationsM = 50.

The flops count refers to the number of floating
point operations required by the implemented code
to run, averaged over the total number of samples
passing by (5000x 50).

The time count refers to the total time required by
each algorithm to run on the specified platform.
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Results of computational-complexity comparison of the
geodesic-based algorithm and the projection-based
algorithm.

ALGORITHM ISI (dB) Flops Time (sec.s)

Geodesic-based —25.057 80594 0328
Projection-based—-25056 81582 0313
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Both algorithms are well-behaving.

The deconvolution performances are comparable for
the two algorithms.
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Both algorithms are well-behaving.

The deconvolution performances are comparable for
the two algorithms.

The geodesic-based algorithm may exhibit steadier
convergence.

The projection-based algorithm may be slightly
lighter from a computational point of view.
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Many thanks to...

= The organizers and E.T. Jaynes Foundation!
= Everybody for the kind attention!
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Many thanks to...

= The organizers and E.T. Jaynes Foundation!
= Everybody for the kind attention!
= The Italian team for winning the 1
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