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Talk overview

Blind deconvolution (BD): Signal model, basic
assumptions, Bayesian (‘Bussgang’-type) BD.

Automatic gain control (AGC): Source of
geometrical structure of the parameter space.

Algorithms: Geodesic-based and projection-based.

Numerical experiments and comparison.
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BD: Channel Model

Channel output signal model:

xn = hT sn + νn ,

sn
def
= [sn sn−1 sn−2 . . . sn−Lh+1]T is the system’s input

vector-stream at timen = 1, . . . ,N,
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BD: Channel Model

Channel output signal model:

xn = hT sn + νn ,

sn
def
= [sn sn−1 sn−2 . . . sn−Lh+1]T is the system’s input

vector-stream at timen = 1, . . . ,N,

sn denotes the sampled source signal,

νn represents a zero-mean white measurement
disturbance independent of the source signal,

Lh denotes the length of system impulse responseh.
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BD: Filter model

FIR filter output signal mode:

zm,n = wT
mxn ,

wm = [w0 w2 w3 . . . wLw−1]T denotes the filter’s
impulse response at learning-iterationm= 1, . . . ,M,
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BD: Filter model

FIR filter output signal mode:

zm,n = wT
mxn ,

wm = [w0 w2 w3 . . . wLw−1]T denotes the filter’s
impulse response at learning-iterationm= 1, . . . ,M,

xn
def
= [xn xn−1 xn−2 . . . xn−Lw+1]T denotes the filter

input samples at timen = 1, . . . ,N,

Lw denotes the length of the filter impulse response.
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BD: Channel-Filter Model

Channel-filter cascade output model:

zm,n = cmsn−δm + Nm,n ,

where:

cm denotes instantaneous amplitude distortion,

Extrinsic Geometrical Methods for Neural Blind Deconvolution – p.5/34



BD: Channel-Filter Model

Channel-filter cascade output model:

zm,n = cmsn−δm + Nm,n ,

where:

cm denotes instantaneous amplitude distortion,

δm instantaneous group delay,

Extrinsic Geometrical Methods for Neural Blind Deconvolution – p.5/34



BD: Channel-Filter Model

Channel-filter cascade output model:

zm,n = cmsn−δm + Nm,n ,

where:

cm denotes instantaneous amplitude distortion,

δm instantaneous group delay,

Nm,n denotes so-termed deconvolution noise:

Extrinsic Geometrical Methods for Neural Blind Deconvolution – p.5/34



BD: Channel-Filter Model

Channel-filter cascade output model:

zm,n = cmsn−δm + Nm,n ,

where:

cm denotes instantaneous amplitude distortion,

δm instantaneous group delay,

Nm,n denotes so-termed deconvolution noise:
zero-mean, white, Gaussian random process,

Extrinsic Geometrical Methods for Neural Blind Deconvolution – p.5/34



BD: Channel-Filter Model

Channel-filter cascade output model:

zm,n = cmsn−δm + Nm,n ,

where:

cm denotes instantaneous amplitude distortion,

δm instantaneous group delay,

Nm,n denotes so-termed deconvolution noise:
zero-mean, white, Gaussian random process,
incorrelated with the source signal.
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BD: Basic Hypotheses

Channel’s impulse response satisfieshT h = 1 and its
inverse has finite energy.
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BD: Basic Hypotheses

Channel’s impulse response satisfieshT h = 1 and its
inverse has finite energy.

Channel is time-invariant or slowly time-varying.

Source streamsn is a stationary, ergodic,
independent identically distributed (IID) random
process with mean IEs[sn] = 0 and variance
IEs[s2

n] = 1.

The probability density functionps(s) of the source
signal is symmetric around zero andnon-Gaussian.

Extrinsic Geometrical Methods for Neural Blind Deconvolution – p.6/34



BD: Applications

Equalization of communication channels.
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BD: Applications

Equalization of communication channels.

Optomagnetic memory-support storage and retrieval
enhancement.

Image deblurring.

Geophysical measurements analysis.
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BD: Bussgang filtering

The model reveals that the relationship betweenzm,n and
cmsn−δm is deterministic but for the deconvolution noise.
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BD: Bussgang filtering

The model reveals that the relationship betweenzm,n and
cmsn−δm is deterministic but for the deconvolution noise.

⇓
An estimator of the source sequence having formB(zm,n)

can be designed according to Bayesian estimation theory.
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BD: Filter Structure
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A ‘Virtuous Cycle’Inverse filter updating
Source stream estimation �

- Works�nerWorksbetter
1
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BD as Optimization Problem

On the basis of the available Bayesian estimator, the
error criterion may be minimized:

C(wm)
def
=

1
2

IENm,n[N2
m,n] =

1
2

IEzm,n

[

(

zm,n − B(zm,n)
)2
]

.

Thanks to ergodicity, the ensemble average IE[·] is
estimated by:

IEzm,n[Φ(zm,n)] ≈
1
N

N
∑

n=1

Φ(zm,n) ,

for any vector-valued functionΦ : R → Rp.
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BD: Automatic Gain Control

For practical reasons, it is customary to set the
energy-contraint:

w2
0 + w2

2 + w2
3 + · · · + w2

Lw−1 = 1 .

Namely, the filter’s impulse response should belong – at
any time – to the unit hyper-sphere:

Sp−1def
= {v ∈ Rp|vTv = 1} .
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Geometry ofSp−1

At every pointv ∈ Sp−1, the tangent space has
structure:

TvS
p−1def
= {u ∈ Rp|uTv = 0} .

If Sp−1 ֒→ Rp, which is equipped with the standard
Euclidean metric, then the normal space has
structure:

NvS
p−1def
= {λv|λ ∈ R} .

Extrinsic Geometrical Methods for Neural Blind Deconvolution – p.13/34



Riemannian Gradient onSp−1

Riemannian gradient of a smooth functionf : Sp−1→ R
is a vector∇Sp−1

v f that satisfies:

Tangency:∇Sp−1

v f ∈ TvSp−1 ,

Compatibility: 〈∇Sp−1

v f ,u〉v =
(

∂ f
∂v

)T
u, ∀u ∈ TvSp−1 .

With the above setting:

∇Sp−1

v f = (Ip − vvT)
∂ f
∂v
.
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Geodesics onSp−1

A geodesicv(t) = G(t, v0, g) is a curve on which a
particle, amanating fromv0 with velocity g, slides with
constant scalar speed‖g‖.























v̈ ∈ NvSp−1 ,

v(0) = v0 ∈ Sp−1 ,

v̇(0) = g ∈ Tv0S
p−1 .

The solution is:

G(t, v0, g) = cos(‖g‖t)v0 + sin(‖g‖t) g
‖g‖ .
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∇Sp−1

v -based Optimization

As an optimization law for searching for the minimum
(or local minima) of a regular functionf : Sp−1→ R
overSp−1, we may use the Riemannian-gradient based
rule:

{

dv
dt = −∇

Sp−1

v f ,
v(0) = v0 ∈ Sp−1 .
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BD: Geodesic-based Rule

The general-purpose differential equation may be
customized as:

dw
dt
= −(Ip − wwT)

∂C(w)
∂w

,

with p = Lw and:














∂C(w)
∂w = IEx[γ(z)x] ,

γ(z)
def
= (B(z) − z)(B′(z) − 1) .
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BD: Geodesic-based Algorithm

It is suggested to approximate the exact flow of the
differential equation on a manifold via piece-wise
geodesic arcs:

wm = G
(

tm,wm−1,−∇Sp−1

wm−1
C(w)

)

, m ∈ {1, . . . ,M} .

where:

tm denotes an appropriate sequence of adaptation
stepsizes,

Extrinsic Geometrical Methods for Neural Blind Deconvolution – p.18/34



BD: Geodesic-based Algorithm

It is suggested to approximate the exact flow of the
differential equation on a manifold via piece-wise
geodesic arcs:

wm = G
(

tm,wm−1,−∇Sp−1

wm−1
C(w)

)

, m ∈ {1, . . . ,M} .

where:

tm denotes an appropriate sequence of adaptation
stepsizes,

w0 ∈ Sp−1 is arbitrarily selected.

Extrinsic Geometrical Methods for Neural Blind Deconvolution – p.18/34



BD: Geodesic-based Algorithm

It is suggested to approximate the exact flow of the
differential equation on a manifold via piece-wise
geodesic arcs:

wm = G
(

tm,wm−1,−∇Sp−1

wm−1
C(w)

)

, m ∈ {1, . . . ,M} .

where:

tm denotes an appropriate sequence of adaptation
stepsizes,

w0 ∈ Sp−1 is arbitrarily selected.

Up to numerical error, wm ∈ Sp−1 at every iteration.
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BD: Projection-based algorithm

By the embeddingSp−1 ֒→ Rp, updates along the
Euclidean gradient direction:

wm = Π

(

wm−1 − tm
∂C(w)
∂w

∣

∣

∣

∣

∣

w=wm−1

)

, Π (v)
def
=

v
√

vTv
.

where:

tm denotes an appropriate sequence of adaptation
stepsizes,
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BD: Projection-based algorithm

By the embeddingSp−1 ֒→ Rp, updates along the
Euclidean gradient direction:

wm = Π

(

wm−1 − tm
∂C(w)
∂w

∣

∣

∣

∣

∣

w=wm−1

)

, Π (v)
def
=

v
√

vTv
.

where:

tm denotes an appropriate sequence of adaptation
stepsizes,

w0 ∈ Sp−1 is arbitrarily selected,

Π : Rp→ Sp−1 is the selected back-projector.
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Short Geodesic Arcs

If the time to within the geodesic is extended is short
enough, the geodesic-based algorithm traces the
Riemannian-gradient flow.
In fact, for t small enough, theSp−1-geodesic may be
approximated as:

G(t, v0, g) ≈
(

1− ‖g‖
2t2

2

)

v0 + gt ,

which gives rise to the expression:

wm− wm−1

t
≈ −
‖∇Sp−1

wm−1
C(w)‖2t
2

wm−1 − ∇Sp−1

wm−1
C(w) .
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Pre-whitening

The source streamsn is IID. After passing through the
channel, the samples gain second-order statistical
correlation.
Second-order correlation is easy to remove by data
pre-whitening. Let us define:

Rxx
def
= IExn[xnxT

n ] .

Whitened filter-input vector-stream:

x̂n
def
=R

− 1
2

xx xn .
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BD Algorithms at a Glance

Collect the filter-input stream and build-up the
multivariate streamxn.
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BD Algorithms at a Glance

Collect the filter-input stream and build-up the
multivariate streamxn.

Whiten the multivariate signalxn.

Choose a starting point for the inverse filter impulse
responsew0 and learning parameters.

Compute the final inverse filter impulse responsewM
by the geodesic-based algorithm or the
projection-based algorithm applied to the whitened
input stream.
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Figures of Performance

Residual inter-symbol interference (ISI):

ISIm
def
=

TT
mTm− T2

m,max

T2
m,max

,

whereTm
def
= h ⊗ wm andTm,max denotes the

component ofTm having maximal absolute value.
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=

TT
mTm− T2

m,max

T2
m,max

,

whereTm
def
= h ⊗ wm andTm,max denotes the

component ofTm having maximal absolute value.

Elapsed run-time on a 1.86GHz – 512MB platform.
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Residual inter-symbol interference (ISI):

ISIm
def
=

TT
mTm− T2

m,max

T2
m,max

,

whereTm
def
= h ⊗ wm andTm,max denotes the

component ofTm having maximal absolute value.

Elapsed run-time on a 1.86GHz – 512MB platform.

Flops (counted by Matlabc© 5.3).
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Source and Bayesian Estimator

It is assumed thatsn is a white random signal,
uniformly distributed within [−

√
3,+
√

3], counting
N = 5,000 samples.

In this case, a suitable Bayesian estimator is
B̂(z) = κ tanh(λz).

Parametersκ andλmay be pre-learnt on the basis,
e.g., of the procedure introduced inS. FIORI, Analysis
of modified ‘Bussgang’ algorithms (MBA) for channel
equalization, IEEE Trans. on Circuits and Systems - Part I, Vol.
51, No. 8, pp. 1552 – 1560, August 2004.
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Experiments on a Toy Channel

The channel’s impulse response ish = [1] (Lh = 1)
and the base manifold isS2 (Lw = 3).

In this experiment, the channel-filter-cascade
impulse responseTm = h ⊗ wm = wm.

If we let the learning trajectories depart from
randomly generatedw0 ∈ S2, they should eventually
converge to one of the six attractors [±1 0 0]T,
[0 ± 1 0]T or [0 0 ± 1]T.
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Toy Channel – Geodesic

Numerical results on 100 independent trials,M = 100
learning iterations per trial, learning stepsize 0.5.
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Toy Channel – Projection

Numerical results on 100 independent trials,M = 100
learning iterations per trial, learning stepsize 0.9.
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Experiments on Telephonic Channel

Sampled telephonic channel having durationLh = 14.
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Experiments on BGR: Data

Filter of lengthLw = 14.
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Filter of lengthLw = 14.
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Noiseless channel (i.e., withνn ≡ 0 identically).
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Experiments on BGR: Data

Filter of lengthLw = 14.

w0 = [0 0 0 0 0 0 1 0 0 0 0 0 0 0]T.

Noiseless channel (i.e., withνn ≡ 0 identically).

Learning stepsize: 1 for the geodesic-based
algorithm and 0.9 for the projection-based
algorithm.
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Experiments on BGR: Data

Filter of lengthLw = 14.

w0 = [0 0 0 0 0 0 1 0 0 0 0 0 0 0]T.

Noiseless channel (i.e., withνn ≡ 0 identically).

Learning stepsize: 1 for the geodesic-based
algorithm and 0.9 for the projection-based
algorithm.

Learning iterations:M = 80 for both algorithms.
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Experiments on BGR: Results
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Numerical Complexity Comparison

Algorithms were run on the same batch of 5,000
channel output samples.
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The flops count refers to the number of floating
point operations required by the implemented code
to run, averaged over the total number of samples
passing by (5,000× 50).
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Numerical Complexity Comparison

Algorithms were run on the same batch of 5,000
channel output samples.

learning iterations:M = 50.

The flops count refers to the number of floating
point operations required by the implemented code
to run, averaged over the total number of samples
passing by (5,000× 50).

The time count refers to the total time required by
each algorithm to run on the specified platform.
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Complexity Comparison: Results

Results of computational-complexity comparison of the
geodesic-based algorithm and the projection-based

algorithm.

ALGORITHM ISI (dB) Flops Time (sec.s)

Geodesic-based −25.057 80.594 0.328
Projection-based−25.056 81.582 0.313
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Summary

Both algorithms are well-behaving.
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Summary

Both algorithms are well-behaving.

The deconvolution performances are comparable for
the two algorithms.

The geodesic-based algorithm may exhibit steadier
convergence.

The projection-based algorithm may be slightly
lighter from a computational point of view.

Extrinsic Geometrical Methods for Neural Blind Deconvolution – p.33/34



Many thanks to...

The organizers and E.T. Jaynes Foundation!
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