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The formalism of nonextensive statistical mechanics [1, 2] leads to a generalized Boltzmann factor in the form of a Tsallis
distribution (or factor) that depends on an entropic index and recovers the classical Boltzmann factor as a special limit case
[1]. This distribution may behave as a power law. In a wide variety of fields, experiments, numerical results and analytical
derivations fairly agree with the description by a Tsallis distribution.
Tsallis’ distributions (sometimes called Levy distributions) are derived by maximization of Tsallis entropy [3], under suitable
constraints. However, these distributions do not coincide with those derived for the classical MaxEnt and consequently will
not be justified from a probabilistic point of view, because of the uniqueness of the rate function in the large deviations theory
[4, 5]. In view of the success of nonextensive statistics, there should exist a probabilistic setting that provides a justification
for the maximization of Tsallis entropy. There are now several indications that results of nonextensive statistics are physi-
cally relevant for partially equilibrated or nonequilibrated systems, with a stationary state characterized by fluctuations of an
intensive parameter [6, 7].

In this work I propose an amended MaxEnt formulation for systems with a displaced equilibrium, find that the relevant entropy
in this setting is the Rényi entropy, interpret the mean constraints, derive the correct form of solutions, propose numerical
procedures for estimating the parameters of the Tsallis factor and characterize the associated entropies.
I show that a Tsallis-like distribution can be derived as the minimizer of the Kullback-Leibler information divergence with
respect to a reference distributionQ (or equivalently as the maximizer of ShannonQ-entropy), where the minimization is
carried under a mean log-likelihood constraint and a (mean) observation constraint. The mean log-likelihood constraint
characterizes the ‘displacement’ from the conventional equilibrium. This corresponds to an amended MaxEnt formulation,
where one looks for an intermediate distribution between two referencesP1 andQ; with an additional constraint that tunes
the new equilibrium. The solutionP � is analog to the escort distribution, that appears quite arbitrary [4, 5] in non-extensive
statistics.
Then I present two scenarii for the mean observation constraint: the observable is taken as the mean underP1; the distribution
of a “subsystem”, or underP �; the apparent distribution of the system. In the two cases, I show that the amended MaxEnt
formulation leads to the maximization of the Rényi� Q-entropy, subject to the corresponding mean constraint. So doing, we
recover two of the classical choices of constraint in the nonextensive literature. These two scenarii lead to two Tsallis-like
distributions with opposite exponents, and the entropic index� appears to be simply the Lagrange parameter associated to
the log-likelihood constraint.
A difficulty comes from the determination of the parameter of the Tsallis-like distributions, that are self-referential. In order
to identify the value of their natural parameter, I propose two ‘alternate’ (but effectively computable) dual functions, whose
maximizations enable to exhibit the optimum parameters.
In the conference, I will illustrate these results for several referencesQ(x) present the results of numerical evaluations, and
recover some well-known entropy functionals in the classical Gibbs-Boltzmann-Shannon limit. We will also give further
results concerning symmetry and duality between the solutions associated with classical and generalized mean constraint,
and between entropy functionals. Finally I will discuss the underlying Legendre structure of generalized thermodynamics
associated to this setting.
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