
Comparing Class Scores in GCSE Modular Science

JASON WELCH, County High School, Leftwich, Cheshire, UK

Abstract

Multiple choice tests are used widely in education and elsewhere.  The results of these tests contain

information both about the students’ knowledge and their ability to guess the answers.  This paper

describes the use of Bayesian statistical techniques to attempt to ‘remove’ the guess-work from the

results in order  to obtain information about the students’ underlying knowledge based on our prior

knowledge about the structure of the test.  The resulting mathematical model allows fair comparisons of

the  levels  of  knowledge of  groups  of  students  in schools and highlights  the flaws in  the common

practice of analysing these scores using simple averages.  It also allows more specific comparisons to

be made that are not possible using averages.  These comparisons can then inform teaching practice.

Introduction

A multiple choice test provides the student with a number of options from which they are to select the

correct answer e.g.

The Milky Way is a …

A galaxy

B solar system

C universe

D star

Using such a test to assess knowledge can be problematic not least because the person being tested

could guess the correct answer without any understanding of the topic.  The literature on multiple-

choice  testing  is  wide-ranging  but  can  be  broadly  categorised  into  four  areas:   question  writing,

administration  of  tests  (electronically),  scoring  systems  and  results  analysis.   The  work  comes

predominantly  from  higher-education  (especially  in  medicine,  law,  economics  and  IT)  with

contributions from statistics and psychology.
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The  use  of  multiple-choice  over  other  forms  of  assessment  clearly  depends  strongly  on  question

effectiveness and this has been studied extensively, often using Bloom’s taxonomy (Bloom (1956))

e.g. Simkin and Kuechler (2005). 

Electronic test administration allows both new response types such as confidence assessment (Gardner-

Medwin  (1999)),  and  the  opportunity  for  adaptive  questioning  in  which  questions  are  selected

dynamically based on performance (see Kurhila et al. (2001)).

Scoring and analysis often attempts to address the problem of guessing.  A good overview of scoring

methods is the often-cited paper by Bush (1999),  with several others such as Angoff and Schrader

(1981), Muijtens et al. (1999), and Gardner-Medwin (1999), comparing or analysing specific methods

in  more  detail.   The  use  of  negative  marking  techniques  to  discourage  guessing  has  attracted  a

significant  literature  in  psychology  (see for  example  Bar-Hillel  et  al.  (2004))  with  students  often

reporting  that  such  methods  are  ‘unfair’.   Burton  (2001)  analyses  a  similar  situation  to  the  one

considered here to develop a measure of test reliability, including the effects of question selection.

This  paper  considers  only single-response number-right  scoring,  the situation found in  UK GCSE

modular  science  examinations,  although  the  analysis  applies  to  any  similarly-structured  multiple-

choice test.  The choice of delivery method (paper or screen) is not relevant to the analysis and the

problem of writing good questions is not considered.  This paper is focused specifically on the problem

of inferring individual or class knowledge levels (to the extent that such a quantity can be said to exist)

from their scores on the test.

Raw Data

In UK GCSE modular science examinations, marks are awarded for correct responses only; there is no

‘negative marking’ or other system of penalising guesswork.  The raw scores so obtained are then

adjusted to give a universal modified score (UMS).  This mapping is in general non-linear and depends

on the performance of students across the country.  Empirically the mapping is linear in the middle and

lower scores, but penalises the highest scoring students as shown in Figure 1.  These adjusted scores

obscure the true performance so when we are interested in student knowledge and not headline A*-C

percentages,  ‘raw’  scores  (where  available from the examination board)  should always be used in

comparing performance and are used throughout this paper.  We would like to process the data to find
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out to what extent the students’ scores were influenced by lucky guessing and how much the scores

reflect their knowledge of the subject.

<Figure 1 here>

Bayesian Methods

Bayesian methods are statistical techniques that can help in problems such as this, where the data (test

scores)  are  confused  by  some  kind  of  external  influence  (guessing).   These  methods  work  by

incorporating other  information we have about the problem (being taught by the same teacher, for

example).  A Bayesian method incorporates this prior information in a fair way, allowing the data to

modify and eventually overwhelm the prior knowledge as the quality and quantity of data increases.  A

wide literature on these methods exists and interested readers are directed to Box and Tiao (1992) for

an introduction.

As an example we will consider the problem of analysing a single student’s score on a test.

Basic Model (I0)

We will study the results of a student taking a test in which there are L questions with R responses.

Each student is assumed to know the answers to k questions, and to correctly guess g questions.  The

student will therefore score  s = k + g.  This is a simplified model because students will often make

informed guesses by eliminating some of the ‘distractors’.   We are unable to use this information

however, because it depends on the individual student and is not identified by the testing method.

We would like to infer the student’s knowledge, k, from their score, s.  A Bayesian analysis allows us

to obtain not a single “right” answer for  k, but a probability distribution for  k indicating our state of

knowledge about what k might be.  The Bayesian approach is to interpret probabilities such as pr(x) as

a ‘state of knowledge’ about x, and to use Bayes’ Theorem to manipulate these quantities.  Quantities

that are part of the model but are not directly of interest are ‘integrated out’, effectively adding the

contributions of all possible values.  In our case, we will integrate  g out of the problem, so that our

solution takes into account all possible combinations of guesses.
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The mathematical details are included for readers familiar with Bayesian methods but other readers

may wish to skip directly to the results below.  The analysis yields:

pr  k∣s =∑
g

pr  s∣g , k  pr g∣k  pr  k 
pr  s 

The  next  step  in  a  Bayesian  analysis  is  to  assign  prior  distributions,  that  is,  decide  our  state  of

knowledge about quantities before receiving the data.  Without the scores, an analyst who does not

know the class would have no preconceptions about  k and assume each possible value to be equally

likely.  We assign a uniform prior distribution in [0,L] on each k.  pr(g|k)  is a binomial distribution,

selecting  g correct  from  s–k  guesses  with  probability  1/R.   pr(s|gk)  is  zero  unless  g=s–k,

mathematically pr(s|g,k) = ( s-(g+k)), selecting one term from the sum.  Ignoring the constant factors

pr(k) and pr(s) and taking the logarithm yields:

log pr  k∣s =log  L−k !  L−s  log R−1  − log s−k ! − log  L−s ! − L−k  log R

Results using I0

Figure 2 shows the results obtained using this formula for R=4, L=24.  Denoting the maximum of the

distribution as k=k  we see that

• k0 for small s consistent with pure guess-work;

• k s for  large  s where  the student  is  very  knowledgeable having  little  reliance  on

guess-work; and

• k s−g  with 2≤g≤4  elsewhere, indicating an expected contribution of two to four

marks from guess-work for average students.

These results are in line with what we would have expected from ‘common sense’ and we can now

develop the analysis to more complex examples.

<Figure 2a> <Figure 2b>

<Figure 2c> <Figure 2d>
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Class Group Model (I1)

We now consider a class of N students.  We assume they have been set for ability and have been taught

by  one  teacher.   This  means  that  we  expect,  before  they  take  the  test,  that  there  will  be  some

consistency  in  the  scores.   We may not  believe  this  very  strongly,  but  when the  data  arrive  our

Bayesian method will allow the data to overwhelm these prior beliefs if there is enough evidence for

doing so.  Mathematically this is done by allowing correlations between the students’ k’s.

<Figure 3 here>

To model such a correlation, our prior knowledge of the value of k for any student in the class is taken

to be centred on a middle value m and having a certain width.  (We have used an exponential decay

model in which  pr(k=m+1) / pr(k=m) = constant,  f, as shown in Figure 3.)  Figure 3 represents our

expectation of the spread of students’  knowledge  before we see their  scores.  We expect they will

cluster around a central value with a few students knowing more or fewer answers than this.

We are now interested in finding a value of m which gives an indication of the level of knowledge of

the class as a whole.  We use a Bayesian analysis that takes into account their scores, the likely extent

of guesswork as described in the previous section, and the expected correlation between their levels of

knowledge.  This analysis produces not a single answer for  m, but a probability distribution for  m,

allowing us to state our level of belief in any particular value of m given all the information to hand.  

The mathematical analysis is set up as before:

pr m∣s =∫
f
∑

g
∑

k

pr  s∣g , k , m , f  pr g∣k , m , f  pr  k∣m , f  pr m∣ f  pr  f 
pr  s 

df

where bold type is used to denote vector quantities such as s = (s1, s2, …, sN), the N students’ scores.

We ‘integrate out’ the model parameters that are not of direct interest as before, namely f,  g, and k,

thus taking account of all possible values in a fair way.  In the case of  g and k, as these are discrete

variables, the integration is a sum.
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We now need to encode our prior knowledge in the probability distributions in the equation above.

Standard Bayesian procedures exist for assigning priors on certain quantities (see Box and Tiao (1992)

for  more details). These suggest a uniform prior  in [0,L] on  m (independent of  f) and a prior  on  f

proportional to f-1 in some suitable range 0<f<1.  In order to perform the calculations on computer we

will  discretise  f to  some suitable  resolution  in  the  range.   pr(g|k,m,f)  is  the  binomial  distribution

discussed before.  pr(s|g,k,m,f) again selects from the sums those g for which s = g + k.  pr(k|m,f) is

proportional to f −∣k−m∣  for each k independently, modelling our exponential prior on k centred on m

with fall-off rate, f.

Putting all of these ideas together and ignoring the constant pr(s) for the moment yields:

pr m∣s ∝∑
f

Z−N  f , m 

 L1 

Z f

f
∏

i
∑

k
i

f
−∣k

i
−m∣  L−k i ! R−1 

L−s
i

 si−k i !  L−si ! R
L−k

i

where i is an index running across the students in the group.

Although the quantity of interest is the probability distribution for m, we would like also to obtain pr

(s) as this is the probability of obtaining the data based solely on the use of this model.  We will call

this quantity the ‘evidence’ for the model and we will use it later to compare models.  Mathematically

we require all other distributions to be normalised so that pr(s) is simply the normalising constant for

the final distribution.  We have denoted this normalisation for pr(k|m,f) as Z(f,m), and for pr(f) as Zf in

the chosen discrete range.

Test Group Results using I1

Three ‘toy’ datasets were generated based on N = 20, L = 24, R = 4.  In ‘toyA’, a group expected to

achieve ‘A’ grades, each student scored 21.  In ‘toyG’, expecting ‘G’ grades, students scored between

6 and 9.  In ‘toyC’, expecting ‘C’ grades, students scored between 9 and 14.

The results are shown as Figure 4; each plot shows pr(m|s), the resulting or posterior distribution for

m,  given the scores.   The results  show the patterns  expected; the model predicts ‘toyA’  knew 20

answers, ‘toyC’ knew 9 answers, and ‘toyG’ knew 3 answers.  This is sensible given the basic model

where perhaps 2-4 marks are scored from guessing.  The correlations have had the effect that the
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spread of scores in the group is explained by a range of knowledge around  m, and by guess-work.

Once the guess-work has been accounted for, only a small range of knowledge is required to explain

the results, hence the posterior is narrower than the original range in the data.

<Figure 4 here>

Real Group Results using I1

Three real datasets for a GCSE science module test on ‘Inheritance’ were then analysed based on L =

24, R = 4.  Data from three classes who took this test were analysed; class 3, N=27; class 6, N=21; and

class 8, N=19.  The classes are ability sets in numerical order in Year 10, predicted mostly ‘C’, ‘D’ and

‘F’ grades respectively.  The results are shown as Figure 5.

In these results we see a similar pattern to the ‘toy’ datasets.  In class 8 however, the posterior is flatter

and wider.  This is due to a larger spread of scores in this class.  The posterior shows the model’s lack

of ability  to  distinguish uniquely  between spread  of  ability  and  spread  of  luck  in  guessing.   The

advantage of the Bayesian approach is that the lack of uniqueness is  quantified  (has an associated

probability  level)  and  can  be  used  in  fair  comparisons.   We shall  see  later  that,  with  additional

information,  we  can  in  fact  go  some  way  to  distinguishing  between  spreads  in  ability  and  in

guesswork.

<Figure 5 here>

Comparison of Models

The class  group model  I1 incorporates  our  assumption that  the scores  will  be correlated  (grouped

around m) based on the fact that the class has been set for ability and taught by the same teacher.  The

Bayesian method allows us to compare this assumption with the assumption  I0 that each student’s

performance was individual (that the correlations are not real).

The ‘evidence’ for a model is pr(model|data).  Given two models we can compare them using:
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pr  I1∣s 

pr  I 0∣s 
=

pr  s∣I1  pr  I1 ÷pr  s 

pr  s∣I 0  pr  I 0 ÷pr  s 

=
pr  s∣I1

pr  s∣I 0 

where  I0 and  I1 are the models (between which we assume no preference in advance), and  s are our

data.  The normalising constant for pr(k|s) in the basic model (single student) and pr(m|s) in the class

group model is associated with pr(s|I0/1) above, the evidence for the model mentioned previously.  The

ratio measures to what extent the data tell us we should prefer one model over the other.  Typically

these ratios are large powers of 10 because  pr(s) is a product of perhaps 30 independent data, each

with probability of perhaps 0.3, resulting in evidence ~0.330=10-16.

Applying this analysis to the ‘toy’ and class datasets reveals overwhelming evidence in support of the

correlations proposed in the whole-class model (see Table 1).  In other words, the data provide strong

evidence for the supposed correlations between students’ knowledge.  This is weakest in class 8 where

the spread of scores suggests more individuality in the students’ performances.

<Table 1 here>

Using Additional Prior Information

Some examination boards’ papers have still more structure which we can use as prior knowledge in

our model.  We will consider the case where the questions in the paper are grouped into sections of

increasing difficulty.  This means that we expect scores to decrease as we progress through the sections

of the paper for all but the highest ability student.  We will take the example of three sections of eight

questions each, four answer choices, with each section increasing in difficulty.

To begin, consider  the example of two students A and B whose scores in the three sections were

(3,4,5) and (7,4,1) respectively.  Although equally graded with a raw score of 12, most analysts would

say that student B knew more correct answers than student A.  With a low score in the easy section,

student A is unlikely to have known five answers in the most difficult section; she probably guessed
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more  successfully  than  did  student  B.   We  might  suggest  that  student  A’s  result  is  reasonably

consistent with knowing little of the subject, while student B’s result shows sound basic knowledge

(but perhaps not advanced knowledge).

In order to model this mathematically we will separate s, k and g into three parts s1, s2, s3 etc. one label

for each section of the paper, section one being the easiest.  The analysis follows exactly as above until

faced with assigning a prior to k1,2,3.  We factorise the prior as follows:

pr  k1 , k2 , k3=pr  k3∣k2 , k1 pr  k2∣k1  pr  k1 

We assume all scores in section one to be equally likely a priori setting the final term to be constant in,

in our  case,  [0,8].   We assume further  that the correlation  between  k1 and  k3 is  made through  k2,

therefore pr(k3) is independent of k1 directly and we take the prior to be:

pr  k1 , k2 , k3 =pr  k3∣k2  pr  k2∣k1 /9

The posterior distribution is now three-dimensional, a 9 x 9 x 9 grid.  Each set of k’s will have its own

probability assigned.  While this may be difficult to visualise, we can simplify matters later by adding

the contributions of k-combinations that make the same total score i.e. we can look at pr(∑ki|s) instead

of pr(k1,k2,k3|s) – mathematically, projecting the posterior onto lines of constant k= k∑ i.

To proceed we must select a mathematical function to model the correlation between the ki.

Choice of Prior for k2 and k3

Since the sections are of increasing difficulty we expect a priori that the k’s will not increase from k1

through k3.  There should be quite a large penalty against k3 > k2 > k1 so that only overwhelming data

would allow us to accept that a student actually knew many more answers in section three than in

section one.  For k1 > k2 > k3 however we have no a priori preference for additional structure as a good

student will have k1 = k2 = k3 = 8, while a weaker student may have k1 = 8 >> k2 > k3 = 0 (a sound

grasp of the basics but weak application and synthesis skills in Bloom’s (1956) terminology).
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The behaviour we want is shown in Figure 6.  A large value of  k1 allows probability to ‘leak’ into

larger k2’s.  Small k1’s pull most of the prior for k2 into k2=0.  The rate at which the probability decays

to higher  k2 and the extent of leakage for middle  k1’s can be controlled by a parameter.  The same

function can be applied to the prior for k3 given k2.

A possible mathematical form for this is:

pr  k2∣k1=Ae

k
2
 k

1
−8 

where A is a normalising constant and  determines the extent to which probability leaks to high k2.

When k1 = 8 the prior is uniform in k2 as required; when k1 = 0 there is an exponential decay to higher

k2 controlled by .

<Figure 6a> <Figure 6b>

<Figure 6c> <Figure 6d>

We now face the typically Bayesian dilemma of how to set ,  called the ‘regularisation constant’.

Small  represents a strong belief that students weak in one section will know nothing in the harder

sections, therefore favouring k-combinations such as (6,0,0) over (5,1,0).  Large  says that students’

knowledge is less hierarchical.  It would be possible to put a prior on  and then integrate over all

values in some reasonable range, raising the question of what is ‘reasonable’.  On the other hand,

different analysts may legitimately choose different  reflecting their views on students’ knowledge.

A discussion of the merits and technical details of both approaches can be found in MacKay (1999)

and Bretthorst (1988).  We will take a pragmatic, empirical approach for the following reasons.

It is possible to have different regularisation for k3 and k2.  One argument for this could be that, since

there are more middling students than there are exceptional students, we should have a higher decay

rate in k3.  This would be further justified if we could say that section three questions were much more

difficult than section two,  i.e. that the increase in difficulty was non-linear.  Another argument says

that many students will  guess  better in section two than in section three by narrowing down choices

based on partial knowledge i.e. the distractors are easier to identify in section two.  This would require
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a similarly sharp cut-off into section two.  Experience suggests that the data will be good enough to

decide this, and we propose to choose values for the two  that maximise the evidence for the model.

Class Group Section Score Model (I2)

We must now build a model in which both the correlations between students and between sections are

considered.  In the notation used previously we have:

pr m , ∣s =∫
f
∑

g
∑

k

pr  s∣g , k , m , f ,  pr g∣k , m , f ,  pr  k∣m , f ,  pr m∣ f ,  pr  f ∣  pr  

pr  s 
df

where plain text letters now denote vector quantities such as m  m≡ j = (m1,m2,…, mJ) and bold denotes

matrix quantities such as S  s≡ ij = (s11, s21, …, sN1, s21, s22, …, sNJ) for N students answering L questions

in each of J sections on the paper with R responses from which to choose.  We thereby recover a

posterior  distribution for  m,  which we can maximise with respect to   as described, and use to

assess the level of ability of the class.  In our example above, J=3 sections, L=8 questions and R=4

choices.

Prior  information comes in the form of correlations  between students’ scores and between section

scores for each student individually.  The former correlation is encoded as before using the exponential

decay prior for each  kij around that section’s  mj, with fall-off rate  fj.   This prior  is applied to each

section independently allowing different  f’s for  each.  This models the students’ tendency to score

similarly, due to the common setting and teacher.  The latter correlation is encoded as above, although

it is applied to the mj rather than to the individual student’s set of k’s.  This way we link the group’s

scores in each section according to their increasing difficulty, expecting mj < mj-1.

Using our previous formula and inserting the additional correlations we can now write:

pr m , ∣s ∝∏
j

pr m j∣m j−1,  pr  ∑
f

j

Z−N  f , m 

 L1 

Z f
j

f j

∏
i
∑
k

ij

f
−∣k

ij
−m∣  L−k ij ! R−1 

J−s
ij

 sij−k ij !  L−sij ! R
J−k

ij
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Substituting our form for pr(m2|m1) and using a scale parameter prior for  in a suitable range, as we

did for f, yields Equation 1:

pr m , ∣s ∝ 1
9
∏
j=1

J

A j e

m
j
m

j−1
−J 

j
Z

j

∑
f

j

Z−N  f , m 

L1 

Z f
j

f j

∏
i
∑
k

ij

f
−∣k

ij
−m∣ L−k ij !R−1 

J−s
ij

 sij−kij !L−sij ! R
J−k

ij

 

A  computer  programme  was  built  to  implement  this  formula  and  run  for  the  example  case  J=3

sections, L=8 questions, R=4 choices.  A copy of the programme is freely available from the author.

Test Group Results using I2

The programme was run against simple test data to check expected outcomes (see Table 2).  Tests 1-3

show agreement with a common sense view.  In test 4, the data provide some evidence for knowledge

in section 3 greater than in section 2, against the prior, and the posterior begins to reflect this.

<Table 2 here>

The ‘toy’ datasets used earlier  were adapted to provide section scores in keeping with the group’s

expected  grade.   ‘ToyA’  consisted  in  20  students  scoring  21,  adapted  so  that  each  scored  8,7,6.

‘ToyG’ consisted in  20 students scoring between 6 and 9;  combinations used suggested extensive

guess-work  e.g. 2,0,6.  ‘ToyC’ consisted in 20 students scoring between 9 and 14; mostly sensible

combinations such as 7,3,2 were used.  The results, shown in Figure 7, can be compared with Figure 4

from the earlier model.  We have a sharper posterior distribution for ‘toyA’ where all students scored

the  same,  but  a  flattened  and  right-skewed  result  for  both  ‘toyC’  and  ‘toyG’.   The  additional

information  provided  by  the  section  scores  has  lent  some  credibility  to  a  higher  level  of  group

knowledge (and reduced guessing) because students generally scored higher in earlier sections.

The results are,  however,  somewhat sensitive to changes in   and, in particular,  when  is very

small, the posterior can change by several percent.  We chose to select  based on the evidence, but it

turns out that reducing  always increases the evidence.  To see why this is, consider for simplicity

both  ’s to be equal.  They then come out from under the sum in Eqn. 1 as a constant multiplier.
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Making  smaller by a large factor then increases the value of each cell of the posterior by that factor,

but should be offset by a worse fit to the data (smaller likelihood value).  However, the model has

another escape route available – the value of  f can increase to broaden  pr(k)  and continue to fit the

data.  This was checked by obtaining the joint posterior  pr(m, , f | s) and noting the maximum in f

for  different  .   In  each case,  as   decreased,  the  best  f increased  accordingly  to  fit  the  data;

consequently the value in each posterior cell increased and therefore so did the evidence.  This tells us

that our model is over-complicated with more parameters than are needed to explain the data.

<Figure 7 here>

An alternative  and slightly  less strict  prior  (which comes from the empirical  form for  the  charge

density in an atomic nucleus) was tried, with the algebraic form:

pr m2∣m1 =
A

1e
m

2
−m

1


This time the density is broadly constant with increasing m2 until m2 = m1 when an edge is reached and

the probability rolls-off to zero (Figure 8).  The precise shape of this roll-off is controlled by .   By

setting   = 1 / (m1 + a) we get  a roll-off  that is faster  when  m1 is  small,  as required.   This also

removes the nuisance scale parameter, ,  in favour of a location parameter a.  Unfortunately this prior

either gives lower evidence than the original prior (with smooth roll-off), or gives results that permit

unsatisfactory  m-combinations such as (6,6,6) (with higher-value , sharper  cut-offs).  Analysts who

feel this combination is not unsatisfactory may however choose to use this form of prior.

To remove the parameter altogether, a simpler functional form was tried.  This uses a linear, rather

than exponential, decay rate with a gradient dependent on the previous section score.  A gradient of

(mi-1 – 8)/32 was used, where mi-1 is the previous section’s m-value.  This gives a flat prior for mi when

mi-1=8 and a reducing, hard cut-off value for reducing  mi- 1.  Although this is initially disturbing as it

fully forbids some m-values in some cases (i.e. sets some pr(m)=0), in practice the results showed little

difference from those of  the exponential  prior  with reasonable .   In projection,  the results  were

indistinguishable to within 1%.  This prior was then used as the basis for all further analysis.

<Figure 8 here>
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Real Group Results using I2

Figure 9 shows the results of applying the final model to the real class data analysed earlier.

<Figure 9 here>

Comparing Figures 9 and 5 we see that the posterior distributions for all classes have been skewed to

the right.  We conclude that the individual section scores show more evidence of knowledge than the

first model predicted; they could show this, for example, by containing more scores like 8,4,0 than

4,8,0.  Class 6 has the weakest skew – a look at the scores shows several guesswork combinations,

such as 5,3,5 and 2,1,3.  Class 8 is interesting in that the data include students with scores of 8,6,6 and

8,5,5 as well as others with 5,0,1 and 6,0,2.  Teachers would probably recognise a genuinely wide

range of knowledge in this group and this is reflected in the flatter posterior for this group.

The results from using the linear prior on m consistently produce significant increases in evidence over

the exponential models in many cases.  In some cases the evidence is smaller but only by factors of O

(1).  This check confirms that the choice of prior is satisfactory.

Comparing the new model (I2) to the original model (I1, with only total score, not section scores) is not

simple because we have essentially different data.  This means that our evidence procedure is not valid.

However, a little manipulation shows that:

pr  I1∣s 

pr  I 2∣s 
=

∑
s

0

pr  s∣s0 , I1  pr  s0∣I1

pr  s∣I 2 

where  s represents the new data (in sections), and  s0 represents the original data.  In the sum, any

dataset s0 in which the section scores do not add to the total score has first term zero.  Only the original

dataset meets this criterion.  We therefore retain the evidence ratio, but we modify the original model

by a ‘weight factor’ equivalent to the probability of getting the section scores given the full scores, pr

(s|s0).  Model I1 does not know about sections, so all valid section scores are equally probable.  If there

are W ways of making up a given total score from section scores, then the weight factor on that score is

W / (L+1)3 (L being 8 in the present case).
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Table 3 shows the evidence values for various data and model combinations.  As discussed earlier,

model I1 is overwhelmingly supported over the uncorrelated model, I0 (see row B/A).  Similarly, model

I2 is supported over its uncorrelated model (say I0’, as shown in row F/E).  Model I2 is also superior to

model I1, despite the additional complexity, by a factor of at least 10 for these data.

<Table 3 here>

Table 4 shows a comparison between a traditional analysis of the raw scores and the results found

above.  The traditional approach of looking at means of total scores would congratulate the students or

teacher of class 8 and vilify that of class 6 and class 3 (being only a little ahead of class 8).  Even an

enlightened  school  considering  variance  of  the  raw  scores  will  not  be  able  to  draw  valid,  clear

conclusions as the variance is large as a result of guessed answers.  There is only weak evidence in the

traditional analysis for any difference between the groups.  The Bayesian analysis has plenty to say:

class  3’s  level  of  knowledge  matches  expectations  of  ‘C’  grade  students;  class  8  has  done  well,

although there  is  a wider  range of knowledge within the group;  class 6 has under-performed.   In

addition, the full posterior can be used to ask more detailed questions such as “what is the probability

that class 8 only knew answers in section one?” (0.18), or “what is the probability that class 6 knew

fewer than two questions over sections two and three?” (0.55).  Answers such as these can be used to

inform teaching practice (to focus revision effort after a ‘mock’ examination, for example).

<Table 4 here>

Conclusion

Current analysis of GCSE modular science scores is often unscientific.  The use of UMS scores under-

represents the contribution of high-achievers.  The use of simple averages (even with consideration of

variance) does not give a true picture of a group’s performance because no allowance is made for

guess-work.  The Bayesian method offers a probability distribution for true performance providing the

opportunity to ask more complex questions of the data.  This information can be used both to inform

individuals’  teaching,  and to assist Heads of  Science in identifying effective teaching methods for

different groups.  With the expected continuation of this form of assessment in the new 2006 science

specifications, this technique could be a useful tool for use in schools in the future.
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