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Abstract

We consider in this paper the well known minimum cross-entropy method (MinxEnt)
as applied to the problem of constructing approximations to a non-negative function,
f(x), when partial information about it is given as a set of constraints of the form:

µ0 =
∫ b

a
f(x)dx µj =

∫ b

a
kj(x)f(x)dx j = 1, . . . , n ,

i.e. its normalization, µ0, and a set of expectation values of certain functions, kj(x)
(j = 1, . . . , n). On applying the MinxEnt method to this problem, a minimum of
the cross-entropy functional

E [f : f0] =
∫

D
f(x) log

(
f(x)
f0(x)

)
dx

has to be computed, where f0(x) is a prior approximation to f(x), usually obtained
from the knowledge of the specific problem in which f(x) and the constraints ap-
pears.

One can find in the literature a number of algorithms to deal with this prob-
lem which works for some particular situations (see e.g. [1]–[4] among others). Our
intention here is to discuss the behavior of the standard optimization methods (New-
ton, quasi-Newton, ... with line–search of several types) with the aim of developing
a general algorithm to solve the minimization problem in the sense that it could be
applied to a wide set of densities and constraints, ranging from the discrete to the
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continuous cases. As illustration, the density of zeros of several families of orthog-
onal polynomials (discrete case) and also some problems related with the charge
density in atomic systems (continuous case) are discussed.
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