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ABSTRACT

In this paper we first propose a brief description of the
Maximum a posteriori (MAP) Bayesian approach with
Maximum Entropy (ME) priors to solve the linear system
of equations which is obtained after the discretization of the
integral equations which arises in various tomographic
image restoration and reconstruction problems. We discuss
then about the main problem which is to choose an a priori
probability law for the image and to determine their
parameters from the data. We propose then a method to
estimate simultaneously the parameters of the ME a priori
probability density function (pdf) and the pixel values of
the image and give some simulated results which compare
this method with some classical ones.

1. INTRODUCTION

We adress a class of discrete image reconstruction and
restoration problems which can be described by the following
problem: Estimate a positive vector X (representing the pixel
intensities in an object) given a vector of measurements y
(representing either a degraded image or the projections of the
object) and a linear transformation A relating them by :

y=Ax+b 1
where b represents the noise measurement which is supposed
to be zero-mean and additive. Let us assume that we have only

an approximate information about the noise variance o2 and
some global information about the object.

We use the Bayesian approach and a Maximum a posteriori
(MAP) estimation technique to solve this problem. Our
estimator % is the argument which maximizes the a posteriori
distribution p(xly) which is obtained by the Bayes' formula:

p(xly) = p(yIx) p(x) /p(y) @

In this equation, p(y) is independent of x, p(ylx) is, in fact,
related to the noise probability law, and p(x) is an a priori law
on X.

We are not given directly p(yix) and p(x), and the main
problem is how to determine them. To do this, we use the
Maximum Entropy (ME) principle. The idea is that, if we have
not enough information about a random process to assign it a
probability law, we can choose the ME law which satisfies our
a priori information.

The ME principle can be used if this knowledge can be
stated as some constraints on p(x). In general these only
constraints are not sufficient to determine uniquely p(x). Then,
between all probability laws which satisfy these constraints, we
choose the one which has maximum entropy [1-4].

Mathematically this leads to: given the constraints:

E{g) =[ g0 pdx=d; i=1,..M 3)

2069

where g;(x) are known functions, determine p(x) which
maximizes the entropy:

H =~ [p(x) Ln p(x) dx @)
The solution is classically given by:
M
1
p® =7 expl 3, 4,8,0] )
i=

1
where Z is the partition function which is given by the
normalization constraint:

M
Z(Ay, Agyees Mgy ) = J.exp[ ; l,-g,-(x)] dx

and the Lagrange multipliers 4;,i=1,..., M are determined
by the constraints (3) by solving the following system of
equations:
3Zpy Ay M) 02, =d; i=1,2,., M 0
Now, if we can assign p(x) and p(y|x), then the problem is
solved by finding an algorithm which determines % by:
% = Arg max p(xly) = Arg max {p(¥Ix) p(0)}

©)

®

If we know only the variance 62 of the noise, then the ME
principle will give us :
p(ylx) = exp[-Q(x)] with Q(x) = [y-Ax][y-Ax]/6?> (9)
In this paper we discuss first in detail how to choose the @

priori p(x). We will show that, with some global constraints on
the image x, p(x) is in the form :

n

PINENY

n
P = 5 exp[-A Y HG) - p
i=1 =1

where S(x)=x and H(x) can be either —Lnx , xLnx or x* . The
estimation problem (8) is then equivalent to :

= Arg min { 0(x)+ AHx) + 1 Sx)} an
which can also be considered as the solution of a regularization

problem in which (A, u) are the regularization parameters
(hyper-parameters).
Two main difficulties in real applications are :

i) When the hyper-parameters (A, ) are given how to solve
(11) ? This can be achieved only by an iterative method.

ii) How to determine the hyper-parameter (4, 1) values from
the available datay ?

These two problems are the object of many authors'
researches today [1, 2]. To solve the first one we used a
conjugate gradient technique. The principal properties of this
technique are now well established. The algorithmic details of
our method is given in [3, 4]. The main contribution of this
paper is that we present a joint method to estimate iteratively the
hyper-parameters and the pixel values of the object.

(10)
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The organisation of this paper is the following: in section II
we give arguments to choose the form of the prior law p(x). In
section III, we give some relations to estimate the hyper-
parameters of this law. In section IV we present a summary of
the method and, finally, in section V we give some simulation
results.

I. DETERMINING THE FORM OF P(x)

p(x) is an a priori law on x. It must be as general and
noninformative as possible, i.e. it must only reflect our a priori
knowledge about x. In image reconstruction and restoration
problems, we know for example that x;>0, and may have some
global g priori knowledge about the mean total intensity of the
object we want to restore. The main problem is how to
determine an a priori law to reflect this information. In the
following we give two different viewpoints which give the
same results.

I1.1. A Statistical Viewpoint

We want to determine p(x) from a finite set of statistical
observations on x. So we limit ourselves to a parametric
representation of p(x) with a few number of parameters.

Our main hypothesis is that we cannot have any a priori
information about the correlations in x. So we must not use
any a priori information about the correlations to estimate the
parameters of p(x). The estimation is done from some finite

scalar observation functionals ¢(x), k=1, 2,..., m on the
image. This hypothesis limits ¢(x) to be in the form [g]:

n
) =Y fix) k=1,2,...m
i=1
Our next hypothesis is that we cannot @ priori distinguish

any region in the object which must be found. This means that
the pixels are interchangeable so that p(x) must be symmetric in

x; . This limits us to choose f; =f Vi. So we have:

n
X =3 fax) k=1, 2...m
i=1
Using the Lagrangian multiplier technique, given the m
constraints @(x), k=1, 2,..., m on the image x, we find:
n n m n
Yreal=Iexp[ X Adid =] Tpxd
i=1 i=1 k=1 =1
(14)

Now if we limit ourselves to a solution with two parameters
for p(x) and choose two scalar observation functions:

12

13)

m
p(x) =exp[ X2,
k=1

$,(%) =S(x) = 3, S(x) (15)
$,(x) = H(x) = Y, H(x)) (16)
then we have:
px;) = exp[A H(x;) + u S(x))] an
or, equivalently:
P() = 3 explAH() + uS()] a8

I1.2. The Maximum Entropy viewpoint

In this case we use the ME principle to directly determine the
form of p(x). We suppose that the only a priori knowledge that
we dispose about the object is in the form:

E{S(x)} =5
E{H(x)} =h 19
where S(x) and H(x) are two known functions. With these two
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global constraints, the ME principle gives us an exponential
pdf, the same as in (18):

1
p(x) = 7 exp [AH(x) + pS(x)] 209
The parameters (4, u) are related to (s, h). They are
obtained by calculating the partition function Z(A, ):

Z( ) = [ explAH() + pS()] dx (e3))
and by solving the following system of equations:
0Z(A, p)/op =5 @2)

0Z(A, p) /A =h
11.3. How to choose H and S.

Without any other restriction, H(x;) and S(x;) can be any
function, but we want to be able to estimate the parameters

A and u from some statistics on the data y. The matrix A in
equation (1) is, usually, singular or at best very ill-conditioned.
This means that we can only relate accurately the mean value of
¥, (E{y;}), to the mean value of x, (E{x;}). So that we can
only estimate accurately one statistical observation on x and can
estimate only one parameter. However we will see that, with
some conditions, it is possible to estimate another statistical
observation on x which is var(x) from var(y) if the SNR is
high enough. So we study only two cases:

a) the case with only one parameter (k = 1) where:

P = F explAH(] @)
b) a special case of two parameters (k = 2) where:
p(x) = %— exp [A H(x) + u S(x)]
with: Sx) =Y x; and H(x)= Y, H(x) 24

Now, to choose H(x;), we accept two axioms:
i) When we change the scale of the image u=k x, if we note
by (4;, i) the parameters of py(x; A, 11;) and by (A, i)
the parameters of py(u; Ay, 1), the parameters (4, 14) must
be obtained from the parameters (A, ;) by a fixed
transformation ¥, V.
i) The solution of our problem x obtained by (11) must be
independent of the scale of the measurement.
Mathematically these two axioms are:

3Y: (o) =¥k, (A4, 1)) Yk

- - [ Av-DiAV-y) i
X Ar‘g>la1m [ vary) 15D L py(v; A, 11y) ]
=>

. (Av-k Y)Y Av—k y)
=A — e L ; A s
kx = Arg min [ vart v) 710D npy(v; A 119 ]

Using these two axioms, we have showed [§] that, in the
case when k=1, the only choices for H(x) are:

{Ln x, x*}
and, when k=2, the only choices for H are:
{xLnx, Lnx,x").
In the following, we limit ourselves to the case k=2 with:
Hx)=H,(x)= Lnx; (25)
We are going now to explain how one can estimate the
parameters (A, i) from the data y.

)
ii)

III. PARAMETER ESTIMATION

If we knew the values of (s, &) and if we were able to



calculate the partition function Z(4, ), then the parameters
(A, 1) could be obtained by solving the system of equations
(22). This is not the case, because, first it is not always
possible to find an analytic solution for Z(A, u) and second, in
practice (s, 4) must be estimated from the data y. s is linear in
X, it can be estimated from the data y, but 4 is not linear and it
is not possible to estimate it directly from the data y. So we
propose to estimate (A, 4) by the method of moments, ie.
estimate the mean e,=E{x;} and the variance v,=E{(x;—¢,)2}
of the object pixels from the data y and relate them to the
parameters (4, 1t). To do this, we show that if we can make the
hypothesis:

za,-j =cte, VJ, (26)
:

then, (e,, v, ) can be estimated from (e, , vy ) by the following
relations:

e=m e, /S Sa;

{ ’ ! with Q=—22—  (27)
ve=1/n (y—e,1)'Q(y-¢,1) (AADZ+el

where Q is the generalized inverse of AL A. So if we can find a

relationship between (A, ) and (e,, v,) the problem is then
solved. To do this, note that we must be able to calculate the
integrals:

At

o) = [x-ap(x) dx for a=0, 1, 2 (28)
0

When H(x) is in the form Lnx, p(x) is in the form
p(x) = A x~* exp[—ux] and we have analytic solutions to

these integrals which converge for A<1, u>0. It is then easy to
show:
{e = ~(A+1)/A (v—e2) Iv

i
v = (A+1)/u? {# elv
When H(x) is in the form —xLn x, p(x) is in the form

p(x) = A exp[-A x Ln x — pt x] and we have no more analytic
solutions to these integrals, so that it is impossible to establish

an analytic relation between (A, ) and (e, v). However they

(29)

converge for A<0, ue R, and it is possible to establish a

numerical table which will give (4, p) via (v/e?, e). This will
be explained in more details in a forthcoming paper.

IV. SUMMARY OF THE METHOD

The method described above, and refered to as our optimal
method is then the following:
i) Calculate e, and vy from the data y,
ii) Calculate e, and v, from e, and Vys using (27),
iii) Calculate (A, p) from e, and v, as described in the
preceeding section, and
iv) Find the solution % using (11).

However, step ii) needs a generalized inverse of AA'. We
present a sub-optimal method which does not need to do
this. This is due to the fact that even when (4, it ) are given, to
determine X we have to minimize (11) which is not quadratic in
x. This can be done only by iteration. So at each iteration we
have an estimate of the solution. So a sub-optimal estimate of
(A, ) can be found from the current solution. This needs a

good estimate in the first iteration.
The sub-optimal method works as follows:
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i) The algorithm is initialized by either an approximate
solution obtained previously or by: Aty / (Xai; )2
ii) A first approximation of the hyperparameters (4, i) is

calculated using (29)
iii) A modified conjugate gradient algorithm is used to
minimize (11) and to find a new estimate X.
iv) After some iterations, a new estimate of the
hyperparameters (A, i) is calculated and we continue until
some stop criterion is achieved.

More details about this algorithm, its theoretical
foundations, its practical convergence and its use will appear
shortly.

V. SOME SIMULATION RESULTS

In these simulations we call:
-'Optimal 1' the case when the actual hyperparameters

(A, y) are known,
- 'Optimal 2' the case when (4, ) are estimated from e,
and v, using successively (27) and (29),
- 'Tterative 1' the case when (A4, ) are, at each step,
estimated from the solution at that step using (e, ,v, ) and (29),
- 'Iterative 2' the case when the noise variance o2 is also
estimated at each step, by:

1 . A 1
0'2=var(b)=—”72(bi -b)2 with b=y-A x andb :EZbi .
- '"ILSP' (iterative least squares with positivity constraint) the

case when we hold A = g =0 but apply the positivity
constraint at each iteration.
- 'ILS' (iterative least squares) the case when we hold

A =1 =0 and do not apply the positivity constraint at each
iteration.

a) 1-D Image restoration

Figure 1 shows a 1-D object, the degraded data (blurred
with a Gaussian impulse response and degraded by a zero-
mean Gaussian noise with variance 02 = 3.16 x 10-2, which is
equivalent, in this case, to a S/N ratio about 20 dB) and the
different restorations obtained by the methods mentioned in the
last paragraph.

The following table compares the different results. In this
table D = lI8—x|l measures the misfit of the estimation,
0 = lly-ARIl/0? measures the misfit of the data, H is the
entropy of the estimation, S is the total intensity,

J =0 + AH + uS is the achieved value of the criterion and,
02, A and p are the estimated parameters.

Method Optimall | Optimal2 |Iterative 1| Iterative2
D 5.23x10-2]5.19x10-2 [ 5.15x10-2[ 5.15x10-2
Q 107 110 109 127
H -171 -174 -163 -170
S 67.5 66.6 67.5 67.5
J 430 509 511 541
o2 3.16x102 [3.16x10-2 | 3.16x10-2 | 3.25x10-2
A -0.65 - 0.96 - 0.95 -0.97
u 3.13 3.49 3.66 3.69

What can be concluded from these preliminary results is that
all the methods have an acceptable final distance D, but the



methods Optimal 2, Iterative 1 and Iterative 2 have over-

estimated the parameter /i, but under-estimated the parameter A
The noise variance in Iterative 2 has been estimated correctly.
We can see that the results obtained by ILS and ILSP have
great variances and are not satisfactory. As mentioned before,
these results are preliminary.
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Figure 1: 1-D image restoration
2-D Image restoration

In these simulations we considered an image. which is
blurred by a Gaussian PSF and degraded by a Gaussian noise.
Given then these data, we have restored the original image by
Optimal 1 and Iterative 1 methods. Figure 3 shows these
results. We can see that in this case, Optimal 1 gave a more
regularized result than Iterative 1.

VI. CONCLUSIONS

In this paper we have proposed a MAP Bayesian approach
with Maximum Entropy (ME) priors to solve the integral
equation which arises in various tomographic image restoration
and reconstruction problems. A Bayesian approach is a
coherent way for solving inverse problems because it allows us
to take into account both the uncertainty on the data and the a
priori information on the solution. One major difficulty,
however, is the determination of g priori law of the image. The
ME principle solves this difficulty in a coherent way.

‘When we know only the noise variance and some global
constraints on the image, by applying the Bayesian approach
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Figure 2: 2-D image restoration

and ME principle, we find a regularization problem in which

the entropy of the image is used as a regularization functional.
In real applications two problems arise:

i) how to determine the hyper-parameters, i.e. the variance of

the noise and the regularization parameters (A, ) from the
data.
ii) how to minimize effectively the regularization criterion (12)
which is not a quadratic form when the entropy is used as the
regularization functional.

We proposed a method to determine iteratively the hyper-
parameters and used a modified conjugate gradient method to
solve the second.
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